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180. A Remark on q.conformally Flat Product
Riemannian Manifolds

By Toshio NASU*) and Masatoshi KOJIMA**)

(Comm. by Kinjir5 KUNUGI, M. Z. n., Dee. 12, 1974)

Recently, the study of curvature structures of higher order has
been developed by J. A. Thorpe, R. S. Kulkarni and many other people.
Especially, Kulkarni has introduced the interesting double orm con o
associated with the given double form w, which is a generalization of
Weyl’s conformal curvature tensor for the case of higher order. Also,
the present first author has studied in [3] on q-conformal flatness for
Riemannian manifolds.

The object of this paper is to investigate on the double orms in
product Riemannian manifolds, and apply it to obtain a theorem on q-
conformally flat product Riemannian manifolds. An exposition with
detailed proo o Theorem 2 will be published elsewhere.

We shall assume, throughout this paper, that all manifolds are
connected and all objects are of differentiability class C. For the
terminology and notation, we generally ollow [1] and [2].

1. In this sectio we shall give a brief summary of basic formu-
lae for later use (for the details, see [2] or [3]).

Let A(V) and A(V*) denote the exterior powers of a real n-
dimensional vector space V and its dual space V*, respectively
(O<=p=n). We consider the spaces

,(V)--A(V*)(R)A(V*), O<=p, q<=n, .q)(V)= _q),(V).
p,q=0

An element w e _q),(V) is called double form of type (p, q) on V, and its
value on u---x/hx/ /hx e A’(V) and v--y/hy/ /hy e Aq(V) is
denoted by

w(u(R)v) w(xlx2 x(R)ylY2 Yq).
_q)(V) orms an associative ring with respect to the natural "exterior
multiplication A", and we have
( 1 ) wAt-- (--1)+qtA
for any double orms , t of types (p, q), (r, s), respectively. A sym-
metric double form of type (p, p) is called the curvature structure of
order p on V, and the set o such elements is denoted by C(V). C(V)
=o C(V) orms a commutative subring of (V) called the ring of
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curvature structures on V.
Let g e 5’(V) be a metric on V. The contraction c maps ,q(V)

into
both p, q=>l, then we set

( 2 ) cw(xl... Xp_)y’." Yq-1)-- o)(ex.., xp_(R)eyl.., yq_),

where {e, e2,..., en} is an orthonormal base for V. Then, or any
double form (o o type (p, q) we have

c(gr/l/(o)=gr/Aco+(r+ 1)(n--p-q--r)grAo (r>=O),
rom which we obtain inductively

3 ) cgt t (n-- t + s) gt-S
(t- s)

or any integers s, t satisfying 0gs__< t__< n.
2. Let V be a real n-dimensional vector space (a= 1, 2). Let us

set V--VIV and identiy V with the subspace o V. An element
e A(V*) is called of type (p, p) if p-p+ p. and, or vectors x in V

or in V, a(Xx,..., x)=0 except or the case when the p vectors x be-
long to V1 and the other p vectors x belong to V. The set of such
elements is indicated by A,(V*). Then we have

A(V*) , A,(V*) (direct sum).
P+p=P

Now, we consider the spaces
’’;’q)(V) A’(V*)(R)A"q(V*),

and we call an element w of (Pl’ql;P"q)(V) the double orm of type
(P, q;P2, q2) on V. Then we have

,q(V)= , )(,q;,q)(V) (direct sum).
pI+p=P q+q=q

Also, we can identify
2P,q(VI) 2(P1’ q;’)(V), .P’q(V) --.)(’;P’q)(V).

Let g, g. be metrics on the vector spaces V1, V2, respectively. We
introduce a metric g on V by the ormula

g(u(R)v) gl(u(R)v) + g2(u(R)v.),
where u, v are V-components o u, v e V, respectively. Also, we
define two mappings c, c2" P,q(V)--->P-I’q-I(V) as ollow If w e P,q(V)
and p--0 or q--0, we set cw=cw--0. I both p, q__>l, we set

c(o(x. x_(R)yl. yq_)- , o(fx. x_(R)fy. yq_),
(4)

C2(.O(X Xp_ly "yq_) , oo(hx. x_(R)hy. yq_)

where {f, ...,f,} and {h, ..., h} are orthonormal bases or V and
V., respectively. It is easy to see that
( 5 ) c= c+ c on _q)(V),

and or any double orms w, t of types (p, q; 0, 0), (0, 0; p., q), respec-
tively, we have
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(6) c2w=0 and c10=0.
Theorem 1. For any double forms o, of types (Pl, ql; 0,0),

(0, 0; P2, q2), respectively, we have
c(oA 0) c,oA0+ (-- 1)+q’A cO.

Proof. Let Sh(r, s) denote the set of all (r, s)-shuffies
Sh(r,s)-{reS+,; ... and r+<... <r+,},

S+, being the symmetric group of degree r+s. Then, from the as-
sumptions of Theorem 1 and (4), we find

c(AO)(x x+,@y
nl

i=l

O(x(+l x(+)@y(,+). .y(+))
(cAO)(x x,+y y+),

where the second summation is taken over all shuffle-permutations
e Sh(p--l, p) and fl e Sh(q--l, q), and e, denote the sign of the

respective permutations a, ft. Similarly, we see that c(SAw)- c0A w.

Thus, Theorem 1 follows from the equations (1) and (5). q.e.d.
Corollary 1. For any curvature structures we C(V) and e C(V),

we have

7 ) c (w ) Cc;-w cO.
k=O

3. Let (M,g) be an n-dimensional Riemannian manifold and
T(M) be its tangent space at a point m e M. The vector bundles
,(M) and C(M) assign the vector spaces ,(T(M)) and (T(M)),
respectively, as fibres to each point m e M. The algebraic notions and
operations in section 1 can be applied to the rings

5(M)--
p,q=O p=O

where E denotes the vector space of all global sections of the bundle
E. Let R e C(M) be the curvature tensor field of type (0, 4) on M.
The manifold (M, g) is called q-conformally fiat if n4q-1 and con R

0, where
(_l)gAcR8 ) Rcon R + k :(n--4q+2+])

Now, let (M, g) be a product Riemannian manifold of two Rieman-
nian manifolds (M, g) and (M, g) with dimensions n and n, respec-
tively. Then the tangent space T(M) at each point m=(m, m)
(m e M,m e M) is isomorphic in a natural way to the direct sum

T,(M1)Tm(M), so we identify
T(M)- T,(M)Tm(M).

Also, the metric g and the curvature tensor R are given by
g(m)(u@v) g(m)(u@v) + g(m)(u@v),

( 9 ) R(m)(uv@xy)-R(m)(uv@xy) +R(m)(uv@xy),
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at each point m-(m, m), respectively, where R e (M) is the curva-
ture tensor o M and u, v, x, y are the T(M)-components of u, v,
x, y e T(M), respectively. Thus, all algebraic operations and rules
mentioned in the previous section can be now re-formulated for the
manifolds M and M (a--l, 2).

Theorem 2. Let (M, g) be a product Riemannian manifold of two
Riemannian manifolds (M1, gl) and (M2, g2) with constant sectional
curvatures and , respectively. Suppose that both M and M2 are of
dimension >=2q (q>= 1). Then, a necessary and sufficient condition for
(M, g) to be q-conformally fiat is
(10) +-0.

Outline of the proof. We set dim M=n (a=l,2). By the as-
sumptions of Theorem 2 and the formula (9), we have

I 1(11) R g (a-- 1, 2), R (1gl+ g).
Substitute this into the formula (8), and then apply the equations (3),
(5), (6) and (7) to the resulting equation. Then, after long but straight-
forward calculations, we find that the component of type (2q, 2q; 0, 0)
of con Rq is given by the formula

2q-1
2-q [[ n--] (+ tc,)qgq"

--o n--4q+2+]
Thus we get (10). Conversely, it is well-known that (10) and (11) imply
that con R--O, that is, (M, g) is conformally fiat. Hence, we have
con Rq--O (cf. Theorem 1 in [3]).

Remark. The assumption that both M and M are of dimension
>__2q is essential in Theorem 2. In fact, suppose that (M, g) is an
arbitrary Riemannian manifold of dimension n2q and (M, g) is a
fiat Riemannian manifold of dimension m.4q-n-l, then Rq-O by
(9), hence (M, g) is always q-conformally fiat.

Corollary 2. Under the assumptions in Theorem 2, (M, g) is q-

conformally fiat if and only if (M, g) is conformally fiat in usual sense.
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