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Introduction. In the present paper we shall construct the funda-
mental solution E(t, s) for a parabolic pseudo-differential equation
o Lu=—aa% 4+t 2, D)u=0  in (0, c0) X R"

Ulseg="1Uy
where p(t; z,D,) is a pseudo-differential operator of class &S7, )
(0<p<1, —0<§<1, §<p) which satisfies the following condition:

There exist positive constants C, and R such that
(0.2) Rep(t;»,8)>Cax, O™  for 0<t<oo and |x|+|&|>R,
where 1=21(%, &) is a basic weight function definedin § 1. We note that
A(z, &) varies even in x and may increase in polynomial order, and that
it is important to take §<<0 in § 4.

The fundamental solution E(t, s) will be constructed as a pseudo-
differential operator of class S}, , with parameter t and s. The method
of construction of E(t,s) is similar to that given in Tsutsumi [10].
Then the solution of the Cauchy problem (0.1) is given by wu(t)
=E(t, 0)u,.

In §3 we show that if P(f) is a positive operator, then
exp {¢(t—s)E(2, s))} are bounded in S;¥, for t>¢,>s,>0, where ¢ is a
positive constant and N is any number.

As an application of the above theorems, in §4 we construct the
fundamental solution E () for a degenerate parabolic operator

_ 0 21 2kem__ 0

(0.3) Lo_—at—+D”+x D2 __85_+P°

and apply E,(?) to construct the parametrix for P, near x=0 in some
class of pseudo-differential operator. We note that in case I=k=m
=1 the precise symbol of the fundamental solution E,(t) is found in
Hoel [4] and that the operator P, has been studied by Beals [1],
Hoérmander [3], Grushin [2], Kumano-go and Taniguchi [6] and
Sjostrand [9].

§ 1. Notations and basic calculus of pseudo.differential opera-
tors of class S7,,» We say that a C-function A(z, &) in R.XR? is a
basic weight function when i(x, &) satisfies conditions (cf. [6]):
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(1) A7'A+|z]+]ED)* <@, H<AQA+|z[*+]&) (2>0,7,>0,4>0).
(i) (A5, OI<A, A, &+
0<p<1, —0<5<1,6<p, 4, ,>0) for any «, 8.
(i) 2Az+y, H<A,A+|y)a(x, &) (r;>0, 4,>0),
where
A5 (@, §)=(9/95)™ - - - (3/3,) "(—13/0x)**- + - (—10/d2,)P" Az, &),
|0(|=C¥1+ co o, ,‘Blzﬁl'}' cee +,Bn
for any multi index a=(ay, - - -, @), B=(8y, - *, Bn)-
We denote by Sy, ;(—oo<m<oo, 0<p<1, —00<5<1, §<p) the set of
all C=-symbols p(x, §) defined in R% X R? which satisfies for any «, 8
[PE @, ) C,, pa(w, §)mele1 o1l
for some constant C, ;. For a symbol p(x, &) € S7, , we define a pseudo-
differential operator by

Pu(z)=p(z, D,)u(x) = f e p(x, EYAE)E,

where d&=(2r)""d¢ and 74(¢) denote the Fourier transform of u(x) in S
defined by

W) =I e~ iy(x)dx.

For p(z, &) € S}, ; we define semi-norms |p|™, [=0,1, - -- by
[p™= Max {suplzoégz(x, O A, S)‘"‘*"'“'""'ﬁ‘}.
le|+181<l \(x,¢)

Then S7, ; makes a Fréchet space. Set S;°=("_.cnc_w ST,

Theorem 1.1. Let P,=p,x,D,)e S, (j=1,2,..-,v). Then P
=P,P,..-P, belongs to S}, ,, where m=3_,m;. Moreover for any
positive integer 1, there exist C, and I such that

@) <Ci IT 12

where [ depends on M=3"_, |m,|<oo and I but is independent of v.

From the above theorem the following theorem is proved by the
same method in Kumano-go [5].

Theorem 1.2. Let PeS},,. Then there exists | such that

[Pul<Colp[®ull  for any ue L’

where ||-|| is the L*(R™) norm.

For any s>0 we define H,, by H, ,={ue L*; 2(x, D,)u ¢ L*} with
the norm ||l ,={|2*(%, Do)ulf + | u|f}.

If the basic weight function A(z, &) satisfies (i) for a>0, then we
get by Theorem 1.2.

Proposition. Let 0<s,<s,. Then for any ¢>0 there is a positive
constant C, such that

[0y <12 1,00+ C ]

We get the expansion formula as follows.

Theorem 1.3 (cf. [6]). Let P;e S}, (j=1,2). Then we have the
expansion for any N
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o(P.P)(x,8)= 2] —},— 100, OPaw (@, E) +1y(2, §),
lar<y o !

where ry(x, &) € Spitme= (=N,

§ 2. Construction of fundamental solution. Definition 2.1 (cf.
[10D). &%Sy, HEF(ST,,)) is the set of all functions p(¢; x, &) of class
S7,; which are continuous (infinitely differentiable) with respect to
parameter t for ¢>0.

Definition 2.2 (cf. [10]). We say {p,(x, §)};., of ST, , converges to
p(x,§) e Sy, , weakly, if {p,(x,&)};., make a bounded set of S7,, and
i, &) converges to p{3(x, &) as j—oo uniformly on K for any «,p,
where K is any compact set in Ry X R?. We denote by w—&9 (S7, 5
the set of all functions p(¢, s; z, &) of class S7, ,(0<s<t) which are con-
tinuous with respect to parameters ¢t and s with weak topology of Sy, ,.

Theorem 2.1. Under the assumption (0.2) we can construct
E(t,s)=e(t,s;2,D,) e w—E7 (S8, N0 s<t) which satisfies the follow-
ing properties:

(i) LE(t,s)=0 n t>s.

(ii) E(s,s)=L.

(iili) For any N such that —N(p—48)+m<0 we can write

N-1
et,s; x,8)= ,Z‘_o e;t,s;2,8)+ry(t,s; ,8),
where
et,s; x,&)=exp [—r po; 2, S)da], e;(t,s; x,8) e w—E) (S; 7

and ry(t, s; %,8) e w—E¢ (S;%77V+™).  Moreover we get
et 85 @, 8)=0a,.,(, 852, eft, ;2,8 (=D,

where
lal+18]+2]

10;.0.5(ts 85 @, 8)|< T, 2, £)=elal+o181= (=01 kzz {'r Rep (0; =, S)do}k.
Also, E(t,s) is unique in class w—E} (St, ) satisfying (1) and (ii) for
any k.
We can construct E(f,s) by the same method with the proof of
Theorem in [10], using Theorem 1.1 and Theorem 1.3. The uniqueness
is proved applying the energy inequality.

Example 1. L, =% 4+ DU g in (0, c0) X RL.

Example 2. L, =% + D, +12¥)(D, —ix*) in (0, o) X RL.

We can take A(x, §) =1 +8&%+ )%, p=1, 6= —1/k, m=2l in Example
1 and A(z, ) =1 +&+ %), p=1, 6=—1/k, m=2 in Example 2.

Theorem 2.2. Under the same condition with Theorem 2.1 the
adjoint operator E*(t,s) (e w—E2(S?, ) satisfies
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[-—%—E*(t, )+ E*(t, )P*®)=0  int>s,

E*(s,8)=1I
and

{—-aisE*(t, 8)+P*()E*(t,s)=0  in t>s,

E*(t,t)=I.
Corollary. If P(t) is independent of t, then the fundamental
solution E(t, s)=FE(t—s) satisfies also

aa—tE(t)-i—E'(t)P:O in £>0.

If P=P*, then E(t)=E*(t).

Remark. We can prove the similar theorems in this section for
p(t; x, &) e £AST, ») under the conditions

{Re p(t; %, 8) =z, )™ 0<m/'<m,
[pE(E; x,8)/Rep (¢; 2, )< C, A, §)~°=1+21# for any a, B

by using complex powers {P,(z, D,)} for P(z, D,) (cf. [7], [10]).

§ 3. Behavior of E(¢, 5) at (—s)—oco. In this section let p(t; «, &)
e E7(ST, )(m>0) satisfy (0.2) and
3.1) Re (Pu, wy=c ||ulf, 0<t<oco foranyues,
with a positive constant ¢,. Moreover let the basic weight function
Az, &) satisfy (i) for a.>0.

Theorem 3.1. Let t,>s,>0. Then for any integersl, (j=1,2,3)
there exists a positive constant C(ly, t,, s,) such that

[ope(t, sp) ;™ < C(lj, 1y, 8p) exp {—c,(t—1p)} for t>t,

where ¢, 18 any number ¢,<c,.

Note that e(t, s; 2, §) € w—E7,(S;=)(¢>s) according to Theorem 2.1,
and that f(¢, s; x, &) =e'"¢e(t, s; x, &) satisfies

Lf(t,s; x,8=0 int>s.

Then Theorem 3.1 is proved by the following lemmas.

Lemma 3.1. Let u(t) € £2(S) satisfy Lu(t)=g(t) in t>t,. Then
for any b>0 and any c,<ec, there exists B>0 such that

1), < B exp {— et — £} [ut o+ | exp {—citt—0}19@) s udo].

Lemma 3.2. Forany ueS
Cgllul[ab—(n+1)/2],3<”u“z,b<CbIul[io(b+1)+(n+1)/2],$,
where |ul,, ¢=8UDa+ 51<5 |1 +]2)05u(2)| and £ =max (1, z,).

§ 4. Application to operators of degenerate type. At first we
apply the above theorems for the construction of fundamental solution
for L,. If we construct the fundamental solution f(¢; «,D,,7) for
(0/9t) + D3} 4 «**9™, then f(¢t; x, D,, D,) is the fundamental solution for
L,. f(t;x,&, 9 is given by
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@) 15 @, 8 D =etlnls elpl™, Elgl)  (x0),

=exp (—£%1) (»=0),
where ¢=2Im/(k+1) and e(t; x, %) is the symbol of the fundamental
solution of L, of Example 1. With respect to f(¢; x, &, 1), we get by
Theorem 2.1, Theorem 3.1 and (4.1)

3504011 (£5 &, DI Cap e, & 40|01 20

and f(t; x, &) e S;=(t>0), where u(x,§&,n)=|&|+]|x[*|p|™" +|pm/*+D,
Set

f F(Es @, 8, pdt=k(z, &, 7).

Then from Theorem 2.1 and Theorem 3.1 we have

05080, (2, &, ) | < Co,p, () §, )™M 8- W /D= 220,
A left and right parametrix Q for P, is constructed by using k(x, &, )
for |&|<c¢|p/™* and the usual method of construction of the parametrix
for |&|=c¢|p™t. o(@)=q(x, &, ) satisfies

@.2) |oz0%07q(x, &, P | C,, 5,0, §, ) ~H P~ WY&, p)m/Bra=T
for any &, 7,

where v(§, 9) =1+[§[""+|y| and g(x, &, p) =1+, &, 7).
We note that q(x,&,7) belongs to S;%¢” treated in Beals [1], if we
choose weight vector @,=jl/kymE-Dik&+D @ =y, o =pl/ky=mk o, =1 in
case k>l and @,=4, @,=v, ¢, =~ "™ *+0, o, =1 in case k<l by (4.2).

Let P=D,—ix*Dy (cf. [6],[8]). We consider (3/dt)+P*P and
(0/at)+ PP* applying the similar argument. Then we get that P has
a left parametrix if k=even and a right parametrix if k=even or
k=o0dd and m=even.
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