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Introduction. In the present paper we shall construct the funda-
mental solution E(t, s) for a parabolic pseudo-differential equation

(Lu =u +p(t; x, D)u=0 in (0, c) xR
(0.1) / It
where p(t; x,D) is a pseudo-differential operator of class E’(S,p,)
(0<p<l, -c6<1, 3<p) which satisfies the ollowing condition"

There exist positive constants C0 and R such that
(0.2) Rep(t; x,)Co(X,) or 0<t< and
where (x, ) is a basic weight unction defined in 1. We note that
2(x, ) varies even in x and may increase in polynomial order, and that
it is important to take 0 in 4.

The undamental solution E(t, s) will be constructed as a pseudo-
differential operator o class S,, with parameter t and s. The method
o construction o E(t,s) is similar to that given in Tsutsumi [10].
Then the solution of the Cauchy problem (0.1) is given by u(t)
=E(t, O)uo.

In 3 we show that if P(t) is a positive operator, then
exp (c(t--so)E(t, So)} are bounded in S,, for tto>soO, where c is a
positive constant and N is any number.

As an application of the above theorems, in 4 we construct the
undamental solution Eo(t) or a degenerate parabolic operator= 2(0.3) L0 +D + x D +P0
and apply E0(t) to construct the parametrix for P0 near x=0 in some
class of pseudo-differential operator. We note that in case l=k=m
=1 the precise symbol of the fundamental solution Eo(t) is found in
Hoel [4] and that the operator P0 has been studied by Beals [1],
HSrmander [3], Grushin [2], Kumano-go and Taniguchi [6] and
SjSstrand [9].

1. Notations and basic calculus of pseudo.differential opera-
tors of class Sap,. We say that a C-function (x, ) in RR is a
basic weight function when (x, ) satisfies conditions (cf. [6])’
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( A-(l+lxl+ll)<2(x,)<A(l+lxlo+l$l) (a>0, r0>0, A>0).
(ii) ().,, )I<A 2(x,)-+

(0pl, -1,p, A,0) for any a, .
(iii) 2(x+y,)<A(l+y)2(x,) (r0, A>0),

where
2()(x )=(/)...(/n)( i/X)’ (i/X)2(X,$)()

=+... +, ]]=+...+
for any multi index a= (a, ..., an), fl- (fl, ", fl).

We denote by S,.(-m,0pl,-1, 3p) the set of
all C-symbols p(x, ) defined in R R which satisfies or any a, fl

()(x,,() ) < C,(x,
for some constant C.. For a symbol p(x, ) e S,, we define a pseudo-
differential operator by

Pu(x) p(x, Dx)u(x) =.[ e’p(x, )()d,
where d-(2)-d and () denote the Fourier transform of u(x) in
defined by

Pot (,) So, we define semi-norms p, l=O, 1,... by

()k

Then S,, makes a Fr6chet space. Set S;-_<<_. S,..
Theorem 1.1. Let P--p(x, D) e S, (]=1, 2, .,,). Then P

=PP2" "P belongs to S,,, where m=.= m. Moreover for any
positive integer l, there exist C and such that

q(P) II) <c p
j=

where depends on M==[m< and but is independent of ,.
From the above theorem the following theorem is proved by the

same method in Kumano-go [5].
Theorem 1.2. Let P e S.,.. Then there exists such that

Pu ]<C p ]0)] u for any u e L,
where [. is the L2(Rn) norm.

For any s>0 we define H, by H.={ueLZ;2(x, Dx)ueL} with
the norm u ]],= {] 2(x, D)u ]2 + u l2}.

If the basic weight function (x, ) satisfies (i) for a>0, then we
get by Theorem 1.2.

Proposition. Let O s < s2. Then for any z> 0 there is a positive
constant C. such that

llu ,l<ul,+c lug.
We get the expansion formula as follows.
Theorem 1.3 (cf. [6]). Let P e S. (]= 1, 2). Then we have the

expansion for any N
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1
a(PP)(x, )= -p)(x, )p()(x, ) + r(x, ),

N Ov.

where rN(X ) e .,.
2. Construction of fundamental solution. Definition 2.1 (cf.
0.[10]). (S, )( (S ,.)) is the set o all functions p(t;x, ) o class

S,. which are continuous (infinitely differentiable) with respect to
parameter t for t0.

Definition 2.2 (el. [10]). We say {p(x, )}=0 o S,. converges to
p(x, )e S,. weakly, if {p(x, )}=0 make a bounded set of S,. and
p() (x, ) converges to ),()t )as ] uniformly on K or any a, fl,
where K is any compact set in RR;. We denote by w-t.(S.,.)
the set o all functions p(t, s; x, ) o class S,.(Ost) which are con-
tinuous with respect to parameters t and s with weak topology o S,..

Theorem 2.1. Under the assumption (0.2) we can construct
0, 0,E(t, s)--e(t, s; x, D) e w--t (S )(Ost) which satisfies the follow-

ing properties"

) LE(t, s)--O in ts.
(ii) E(s, s)-I.
(iii) For any N such that -N(p-)+mO we can write

N-1

e(t, s x, )- e(t, s x, ) + r(t, s x, ),
=0

where

and r(t, s; x, ) e w-. (.--+) Moreover we get
e() (t, s x )--a,,(t, x )eo(t, s x, ) (1),(D)

where

=

We can construct N(t, ) by the same method with the roof of
heorem in [10], using heorem 1.1 and Theorem 1.8. he uniqueness

is roved aplying the energy inequality.

Example 1. L--+D + z in (0, ) XR.

Example Z. L--+(D+iz)(D--iz) in (0, )xR.

We can take 2(z, )-(1++z)/, 0--1, = -1/, m=21 in Nxamle
1 and 2(z, ) (1 + + z)/, 0-1, 1/, m-2 in Example 2.

Theorem Z.Z. Uger the ame eogtio with Theorem 2.1 the
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and

t
E*(t, s) / E*(t, s)P*(t) =0

E*(s, s) I

in t>s,

--E*(t, s) / P*(s)E*(t, s) --0 in s,

E*(, ) =I.
Corollary. If P(t) is independen$ of t, then the fundamental

solution E(t, s)=E($-s) satisfies also

E(t)+E(t)P=O in

U P P*, then E(t) E*(t).
Remark. We can prove the similar theorems in this section for

p(t; x, ) eS under the conditions
Re p(t x,)Co(X,)"
p(t x, )/Rep (t; x, )[< C,(x,)-+ for any

by using complex powers {Pz(x, D)} for P(x, D) (cf. [7], [10]).. Behavior of E(t, s) at (t--s). In this section let p($; x,
e 7(S,)(m>O) satisfy (0.2) and
(3.1) Re(P(t)u,u)cu, 0< or anyue,
with a positive constant c. Moreover let the basic weight function
(x, ) satisfy (i) for a0.

Theorem 3.1. Let to So O. Then for any integers l (]= 1, 2, 3)
there exists a positive constan C(l, t0, s0) such that

’e(t, So)[:<C(l, 0, s0) exp {-c(-t0)} for
where c is any number cc.

Note that e(t, s x, ) e w-C(S;)(t s) according to Theorem 2.1,
and that f(t, s x, )= e’e(t, s; x, ) satisfies

Lf(t, s x, )=0 in t> s.
Then Theorem 3.1 is proved by the following lemmas.

Lemma 3.1. Le u(t) e () satisfy Lu(t) g(t) in >o. Then.
for any b0 and any c c there exists B 0 such that

][u(t)l],B exp {-c(t-to)}llU(to)li,+ exp {-c(t-a)}llg(a)l[,da
to

Lemma 3.2. For any u e

where +lxl)"  u(x)l and e0:max
4. Application to operators of degenerate type. At first we

apply the above theorems for the constructioa of undamental solution
for L0. If we construct the fundamental solution f(t; x,D, ) for
(/8t) +D +xv, then f(t x, D, D) is the fundamental solution for
L0. f(t x, , V) is given by
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(4 1)
f(t; x, , 0-- e(tlvl xlvl/, IVl-/:) (V 0),

=exp (--2t) (]-- 0),
where a=21m/(k+l) and e(t; x,) is the symbol of the fundamental
solution of L of Example 1. With respect to f(t; x, , O, we get by
Theorem 2.1, Theorem 3.1 and (4.1)

IG33f(t x, G, )l C:,,,Z(x, , v)--</):lvl/>-, v0
and f(t x, , ) e S;(tO), where (x,

Set

f: f(t x, , Odt-k(x, , ).

Then from Theorem 2.1 and Theorem 3.1 we have

["zk(x,, ,)C,,,Z(x, , V)-:-- (/)" V ](/)"- V#0
A left and right parametrix Q for P0 is constructed by using k(x,
for ]]c[]/ and the usual method of construction of the parametrix
or I1 c ll/. (Q) q(x, , ) satisfies

3r )(/)-rx(4.2)
q(x, , ) C,,,rp(x,

for any

where ,(, 0=1+]/+[ and fi(x, , )=1 +Z(x, , ).
We note that q(x, , ) belongs to S treated in Beals [1], if we
choose weight vector
casekland fi, 2 1 in case k by (4.2).

Let P=D--"zx D (cf. [6], [8]). We consider (3/3t) +P*P and
(3/3t) + PP* applying the similar argument. Then we get that P has
a left parametrix if k-even and a right parametrix if k=even or
k odd and m even.
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