35. On Stationary Point Sets of $\left(\mathrm{Z}_{2}\right)^{k}$-Manifolds

By Katsuhiro Komiya
Yamaguchi University
(Comm. by Kenjiro Shoda, m. J. A., March 12, 1975)

1. Definitions. In order to state the results we define some notions.

Let G be a finite group, and $\mathscr{F}, \mathscr{F}^{\prime}$ be families of subgroups of G with $\mathscr{F} \supset \mathscr{F}^{\prime}$. An ($\left.\mathcal{F}, \mathscr{F}^{\prime}\right)$-free G-manifold is a pair (M, φ) consisting of a compact differentiable manifold M and a differentiable G-action $\varphi: G \times M \rightarrow M$ on M such that
(i) if $x \in M$, then the isotropy group $G_{x} \in \mathscr{F}$, and
(ii) if $x \in \partial M$, then $G_{x} \in \mathscr{F}^{\prime}$.

We may define the unoriented bordism module $\mathfrak{n}_{*}\left(G ; \mathscr{F}, \mathcal{F}^{\prime}\right)$, over the unoriented cobordism ring \mathfrak{N}_{*}, which consists of bordism classes of (FF, \mathscr{F}^{\prime})-free G-manifolds (see Stong [2]). If \mathscr{F}^{\prime} is empty, we write $\mathfrak{n}_{*}(G ; \mathscr{F})$ for this module.

Let F be the stationary point set of a G-mainfold (M, φ), and $F=\bigcup_{i} F_{i}$ be the decomposition by the connected components. Let ($D\left(\nu_{i}\right), \varphi_{i}$) be the G-manifold consisting of the normal disc bundle $D\left(\nu_{i}\right)$ of F_{i} and the G-action φ_{i} induced by φ. We suppose that any connected component F_{i} satisfies

$$
\left[D\left(\nu_{i}\right), \varphi_{i}\right]=\left[F_{i}\right]\left[D\left(V_{i}\right), \Psi_{i}\right]
$$

in $\mathfrak{n}_{*}\left(G ; \mathscr{F}_{A}, \mathscr{F}_{P}\right)$ for some positive dimensional G-representation (V_{i}, ψ_{i}), where \mathscr{F}_{A} (resp., \mathscr{F}_{P}) is the family of all subgroups (resp., all proper subgroups) of G and $D\left(V_{i}\right)$ is the unit disc of V_{i}. We say in this case that F has a trivial normal bundle in the weak sense. When we further suppose that $\operatorname{dim} F_{i}=\operatorname{dim} F_{j}$ implies $\left(V_{i}, \psi_{i}\right) \cong\left(V_{j}, \psi_{j}\right)$ as G-representations, we say that F has a trivial normal bundle (in the sense of Conner-Floyd [1; §42]).
2. Statement of results. In this note we study the case in which G is $\left(Z_{2}\right)^{k}$, the direct product of k copies of the multiplicative cyclic group $Z_{2}=\{1,-1\}$. We obtain the following results :

Theorem 1. If the stationary point set F of a closed $\left(Z_{2}\right)^{k}$-manifold (M, φ) has a trivial normal bundle, then we obtain
(i) $[F]=0$ in \mathfrak{R}_{*}, and
(ii) $[M, \varphi]=0$ in $\mathfrak{R}_{*}\left(\left(Z_{2}\right)^{k} ; \mathscr{F}_{A}\right)$.

Corollary 2 (Conner-Floyd [1: (31.3)]). The stationary point set F of a positive dimensional closed $\left(Z_{2}\right)^{k}$-manifold can not consist of one point.

Theorem 3. Let F be the stationary point set of a closed $\left(Z_{2}\right)^{k}$ manifold. If F has a trivial normal bundle in the weak sense, and consists of two connected components F_{1}, F_{2}, we obtain
(i) $\left[F_{1}\right]=\left[F_{2}\right]$ in \mathfrak{N}_{*}, and
(ii) if $\left[F_{1}\right]=\left[F_{2}\right] \neq 0$, then F has a trivial normal bundle.
3. Preliminaries of proofs. First we state the known results.

Proposition 4. There exists a short exact sequence
$0 \longrightarrow \mathfrak{N}_{*}\left(\left(Z_{2}\right)^{k} ; \mathscr{F}_{A}\right) \xrightarrow{j} \mathfrak{N}_{*}\left(\left(Z_{2}\right)^{k} ; \mathscr{F}_{4}, \mathscr{F}_{P}\right) \xrightarrow{\partial} \mathfrak{N}_{*}\left(\left(Z_{2}\right)^{k} ; \mathscr{H}_{P}\right) \longrightarrow 0$,
where j is induced by the inclusion $\left(\mathscr{F}_{A}, \phi\right) \subset\left(\mathscr{F}_{A}, \mathscr{F}_{P}\right)$ and ∂ is induced by restricting a $\left(Z_{2}\right)^{k}$-action to boundary.

This proposition was obtained in the proof of Proposition 2 in Stong [2].

Let \mathscr{F}_{1} be the family consisting of only the identity subgroup of Z_{2}. Then $\mathfrak{N}_{*}\left(Z_{2} ; \mathscr{F}_{1}\right)$ is the bordism module of free involutions on closed manifolds.

Proposition 5 (Conner-Floyd [1; Theorem 23.2]). $\mathfrak{N}_{*}\left(Z_{2}: \mathscr{F}_{1}\right)$ is the free \Re_{*}-module on generators $\left\{\left[S^{n}, a\right] \mid n=0,1,2, \cdots\right\}$, where a is the antipodal involution on sphere.

For a positive integer k let $\mathcal{S}(k)$ be the set of non-empty subsets of $\{1,2, \cdots, k\}$. For any $A \in \mathcal{S}(k)$, let $\left(V_{A}, \varphi_{A}\right)$ be the real 1-dimensional $\left(Z_{2}\right)^{k}$-representation defined by

$$
\varphi_{A}\left(\left(t_{1}, \cdots, t_{k}\right), v\right)=\left(\Pi_{i \in A} t_{i}\right) \cdot v
$$

for $\left(t_{1}, \cdots, t_{k}\right) \in\left(Z_{2}\right)^{k}$ and $v \in V_{A}$. Then $\left\{\left(V_{A}, \varphi_{A}\right) \mid A \in \mathcal{S}(k)\right\}$ gives a complete set of non-trivial irreducible representations of $\left(Z_{2}\right)^{k}$.

Let Z^{+}be the non-negative integers. For any correspondence $f: \mathcal{S}(k) \rightarrow Z^{+}$we define a $\left(Z_{2}\right)^{k}$-representation $(V(f), \varphi(f))$ to be the direct $\operatorname{sum} \oplus_{A \in \mathcal{S}(k)}\left(V_{A}, \varphi_{A}\right)^{f(A)}$ where $\left(V_{A}, \varphi_{A}\right)^{f(A)}$ is the direct sum of $f(A)$ copies of $\left(V_{A}, \varphi_{A}\right)$. If two correspondences $f, g: \mathcal{S}(k) \rightarrow Z^{+}$satisfy $f(A) \leqq g(A)$ for all $A \in \mathcal{S}(k)$, we may regard $V(f)$ as a $\left(Z_{2}\right)^{k}$-subspace of $V(g)$.

We denote the unit dise, the unit sphere of $V(f)$ by $D(f), S(f)$, respectively.

By elementary computations we obtain
Lemma 6. For any $A \in \mathcal{S}(k)$ there is a subgroup H_{A} of $\left(Z_{2}\right)^{k}$ such that
(i) H_{A} is isomorphic to $\left(Z_{2}\right)^{k-1}$, and
(ii) for any correspondence $f: \mathcal{S}(k) \rightarrow Z^{+}$the stationary point set of $\left(S(f), \varphi(f) \mid H_{A}\right)$ is $S\left(f(A) \varepsilon_{A}\right)$, where $f(A) \varepsilon_{A}$ is the correspondence defined by

$$
f(A) \varepsilon_{A}\left(A^{\prime}\right)= \begin{cases}f(A) & \text { if } A^{\prime}=A \\ 0 & \text { if } A^{\prime} \neq A .\end{cases}
$$

Let F be the stationary point set of a closed $\left(Z_{2}\right)^{k}$-manifold (M, φ), and $F_{i}(i=1, \cdots, s)$ be the connected components of F. Let $\left(D\left(\nu_{i}\right), \varphi_{i}\right)$
be the $\left(Z_{2}\right)^{k}$-manifold consisting of the normal disc bundle of F_{i} and the $\left(Z_{2}\right)^{k}$-action induced by φ. We suppose that F has a trivial normal bundle in the weak sense. Then

$$
\left[D\left(\nu_{i}\right), \varphi_{i}\right]=\left[F_{i}\right]\left[D\left(f_{i}\right), \varphi\left(f_{i}\right)\right]
$$

in $\Re_{*}\left(\left(Z_{2}\right)^{k} ; \mathscr{F}_{A}, \mathscr{F}_{P}\right)$ for some correspondence f_{i}.
Lemma 7. Let $F=\bigcup_{i=1}^{s} F_{i}$ be the stationary point set of (M, φ) as in above, then we obtain

$$
\sum_{i=1}^{s}\left[F_{i}\right]\left[S^{f_{i}(A)-1}, a\right]=0
$$

in $\mathfrak{n}_{*}\left(Z_{2} ; \mathscr{F}_{1}\right)$ for all $A \in \mathcal{S}(k)$. (Here we consider $S^{f_{i}(A)-1}$ to be the empty set for $f_{i}(A)=0$.)

Proof. In the exact sequence of Proposition 4

$$
\begin{aligned}
0=\partial j([M, \varphi]) & =\partial\left(\Sigma_{i}\left[D\left(\nu_{i}\right), \varphi_{i}\right]\right) \\
& =\partial\left(\Sigma_{i}\left[F_{i}\right]\left[D\left(f_{i}\right), \varphi\left(f_{i}\right)\right]\right) \\
& =\Sigma_{i}\left[F_{i}\right]\left[S\left(f_{i}\right), \varphi\left(f_{i}\right)\right] .
\end{aligned}
$$

This means that there exists an \mathscr{F}_{P}-free $\left(Z_{2}\right)^{k}$-manifold (N, Ψ) such that

$$
(\partial N, \psi)=\bigcup_{i} F_{i} \times\left(S\left(f_{i}\right), \varphi\left(f_{i}\right)\right)
$$

For $A \in \mathcal{S}(k)$, let H_{A} be a subgroup of $\left(Z_{2}\right)^{k}$ obtained by Lemma 6, and H_{A}^{c} be a complement of H_{A} in $\left(Z_{2}\right)^{k}$. We denote by N_{A} the stationary point set of $\left(N, \Psi \mid H_{A}\right)$. Then, by Lemma 6,

$$
\left(\partial N_{A}, \Psi \mid H_{A}^{c}\right)=\bigcup_{i} F_{i} \times\left(S^{f_{i}(A)-1}, a\right) .
$$

Since $\left(N_{A}, \Psi \mid H_{A}^{c}\right)$ is a free Z_{2}-manifold,
$\Sigma_{i}\left[F_{i}\right]\left[S^{f_{i}(A)-1}, a\right]=0 \quad$ in $\Re_{*}\left(Z_{2} ; \mathscr{F}_{1}\right)$.
4. Proof of Theorem 1. (i) For any i with $0 \leqq i<\operatorname{dim} M$, let F^{i} be the i-dimensional component of F, and $\left(D\left(\nu_{i}\right), \varphi_{i}\right)$ be the $\left(Z_{2}\right)^{k}$ manifold obtained from the normal disc bundle of F^{i}. Since F has a trivial normal bundle

$$
\left[D\left(\nu_{i}\right), \varphi_{i}\right]=\left[F^{i}\right]\left[D\left(f_{i}\right), \varphi\left(f_{i}\right)\right]
$$

in $\mathfrak{N}_{*}\left(\left(Z_{2}\right)^{k} ; \mathscr{F}_{A}, \mathscr{F}_{P}\right)$ for some f_{i}. By Lemma 7

$$
\Sigma_{i}\left[F^{i}\right]\left[S^{f_{i}(A)-1}, a\right]=0
$$

in $\mathfrak{N}_{*}\left(Z_{2} ; \mathscr{F}_{1}\right)$ for all $A \in \mathcal{S}(k)$. Hence, by Proposition 5, $\left[F^{i}\right]=0$ in \Re_{*} for i with $f_{i}(A) \neq 0$. For any i we may appropriately choose A in $\mathcal{S}(k)$ so that $f_{i}(A) \neq 0$. Thus $\left[F^{i}\right]=0$ for all i, i.e., $[F]=0$.
(ii) In the exact sequence of Proposition 4

$$
j([M, \varphi])=\Sigma_{i}\left[F^{i}\right]\left[D\left(f_{i}\right), \varphi\left(f_{i}\right)\right]=0 .
$$

Since j is monic, $[M, \varphi]=0$ in $\Re_{*}\left(\left(Z_{2}\right)^{k} ; \mathscr{F}_{A}\right)$.
5. Proof of Theorem 3. (i) Let $\left(D\left(\nu_{i}\right), \varphi_{i}\right)$ be the $\left(Z_{2}\right)^{k}$-manifold obtained from the normal disc bundle of F_{i} for $i=1,2$. Then, by the assumption,

$$
\left[D\left(\nu_{i}\right), \varphi_{i}\right]=\left[F_{i}\right]\left[D\left(f_{i}\right), \varphi\left(f_{i}\right)\right]
$$

in $\mathfrak{N}_{*}\left(\left(Z_{2}\right)^{k} ; \mathscr{F}_{A}, \mathscr{F}_{P}\right)$ for some f_{i}. By Lemma 7
(*) $\quad \Sigma_{i}\left[F_{i}\right]\left[S^{f_{i}(A)-1}, a\right]=0$
in $\mathfrak{n}_{*}\left(Z_{2} ; \mathscr{F}_{1}\right)$ for any $A \in \mathcal{S}(k)$. From Proposition 5 and the fact that
$f_{i}(A) \neq 0$ for some $A \in \mathcal{S}(k)$ we obtain (i).
(ii) It is sufficient (and necessary) that $f_{1}=f_{2}$. If $f_{1}(A) \neq f_{2}(A)$ for some $A \in \mathcal{S}(k)$ and $f_{1}(A) \neq 0$, then $\left[F_{1}\right]=0$ from the equation (*). This is a contradiction.

References

[1] P. E. Conner and E. E. Floyd: Differentiable Periodic Maps. SpringerVerlag (1964).
[2] R. E. Stong: Equivariant bordism and $\left(Z_{2}\right)^{k}$ actions. Duke Math. J., 37, 779-785 (1970).

