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1. Definitions. In order to state the results we define some
notions.

Let G be a finite group, and if, if’ be families of subgroups of G
with Fff’. An (if, ff’)-free G-manifold is a pair (M, 9) consisting
of a compact differentiable manifold M and a differentiable G-action

G M-.M on M such that
(i) if x e M, then the isotropy group G e if, and
(ii) if x e 3M, then G e
We may define the unoriented bordism module .(G; if, if’), over

the unoriented cobordism ring ., which consists of bordism classes
of (if, ff’)-free G-manifolds (see Stong [2]). If if’ is empty, we write
.(G; if) for this module.

Let F be the stationary point set of a G-mainfold (M, 9), and
F--[_J,F, be the decomposition by the connected components. Let
(D(v,), 9,) be the G-manifold consisting of the normal disc bundle D(v,)
of F, and the G-action 9, induced by 9. We suppose that any connected
component F, satisfies

[D(v,), 9,]= [F,][D(V,),]
in .(G;ff, Fe) for some positive dimensional G-representation
(V,, +,), where ff (resp., F) is the family of all subgroups (resp., all
proper subgroups) of G and D(V,) is the unit disc of V,. We say in
this case that F has a trivial normal bundle in the weak sense. When
we further suppose that dim F,=dim F implies (V,, +,)(V, +) as
G-representations, we say that F has a trivial normal bundle (in the
sense of Conner-Floyd [1; 42]).

2. Statement of results. In this note we study the case in which
G is (Z.), the direct product of k copies of the multiplicative cyclic
group Z.={1, --1}. We obtain the following results:

Theorem 1. If the stationary point set F of a closed (Z)-manifold
(M, ) has a trivial normal bundle, then we obtain

(i) [F]=0 in ., and
(ii) [M, 9]=0 in .((Z); ff).
Corollary 2 (Conner-Floyd [1: (31.3)]). The stationary point set

F of a positive dimensional closed (Z.)-manifold can not consist of one
point.
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Theorem :. Let F be the stationary point set of a closed (Z)-manifold. If F has a trivial normal bundle in the weak sense, and
consists of two connected components F, F, we obtain

(i) [F] [F] in ,, and
(ii) if [F]= [F]4:0, then F has a trivial normal bundle.
:}. Preliminaries of proofs. First we state the known results.
Proposition 4. There exists a short exact sequence

0 ;,((z) ). ,((z) ,) -,((z) )--o,
where ] is induced by the inclusion (,)(,e) and is induced
by restricting a (Z)-action to boundary.

This proposition was obtained in the proof of Proposition 2 in
Stong [2].

Let be the family consisting o only the identity subgroup of
Z. Then ,(Z ) is the bordism module of ree involutions on closed
manifolds.

Proposition 5 (Conner-Floyd [1; Theorem 23.2]). ,(Z: )is
the free ,-module on generators {[S, a] In=0, 1, 2, }, where a is the
antipodal involution on sphere.

For a positive integer k let (k) be the set o non-empty subsets
of {1, 2, ..., k}. For any A e (/), let (V,) be the real 1-dimensional
(Z)-representation defined by

((t, ..., t), v) (//t). v
for (t, ..., t) e (Z) and v e V. Then {(V, )[A e (k)} gives a com-
plete set of non-trivial irreducible representations oi (Z).

Let Z/ be the non-negative integers. For any correspondence

f: (k)-.Z/ we define a (Z)-representation (V(f), (f)) to be the direct
sum e2()(V, )()where (V, )() is the direct sum of f(A) copies
o (V, ). If two correspondences f, g: (k)--.Z/ satisfy f(A)_<g(A)
for all A e q(k), we may regard V(f) as a (Z.)-subspace of V(g).

We denote the unit dise, the unit sphere of V(f) by D(f),S(f),
respectively.

By elementary computations we obtain
Lemma 6. For any A e (k) there is a subgroup H of (Z) such

that
(i) H is isomorphic to (Z)-, and
(ii) for any correspondence f: (k)--.Z+ the stationary point set

of (S(f),(f)lH) is S(f(A)), where f(A)e is the correspondence

defined by

f(A)s(A’)- {f0(A) if A’=A
if A’#-A.

Let F be the statioaary point set of a closed (Z)-manifold (M, ),
and F (i= 1, ..., s) be the connected components of F. Let (D(,), ).
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be the (Z)-manifold consisting of the normal disc bundle of F and the
(Z)-action induced by . We suppose that F has a trivial normal
bundle in the weak sense. Then

[D(,), ] [F][D(f), (f)]
in .((Z) ,e) or some correspondence f.

Lemma 7. Let F=[.J=F be the stationary point set of (M, ) as
in above, then we obtain

:[F][S-, a]=0
in .(Z ) for all A e (k). (Here we consider S- to be the empty
set for f(A)--0.)

Proof. In the exact sequence of Proposition 4
O- 3]([M, ]) 3(X[D(v), ])

=3(X[F][D(f), (f)])
X[F][S(f), (f)].

This means that there exists an e-free (Z)-maniold (N, ) such that
(aN, )=F (S(f), (f)).

For A e 8(k), let Ha be a subgroup o (Z) obtained by Lemma 6,
andH be a complement of Ha in (Z.). We denote by Na the stationary
point set o (N, g’lH,). Then, by Lemma 6,

(NA, H)=[..JF (Ss(a)-l, a).
Since (N, IH) is a ree Z-manifold,

X[F][S()-, a]=0 in .(Z ).
4. Proof of Theorem 1. (i) For any i with 0=<idim M, let

F be the /-dimensional component of F, and (D(,), ) be the (Z)-manifold obtained from the normal disc bundle of F. Since F has a
trivial normal bundle

[D(,), ]- [F][D(f), (f)]
in .((Z); ,e) for some f. By Lemma 7

X[F][S()-, a]=0
in .(Z ) or all A e 3(k). Hence, by Proposition 5, [F]-0 in .
or i with f(A) O. For any i we may appropriately choose A in 3(k)
so that f(A)#O. Thus [F]-0 for all i, i.e., [F]-0.

(ii) In the exact sequence of Proposition 4
]([M, ])--X[F][D(f), (f)]-- 0.

Since ] is monic, [M, ]=0 in .((Z) ).
5. Proof of Theorem 3. (i) Let (D(,), ) be the (Z)-manifold

obtained rom the normal disc bundle of F, for i--1, 2. Then, by the
assumption,

[D(,,), ,]- [F,][D(f,), (f,)]
in .((Z); ,e) for some f,. By Lemma 7
( V[F][S()-, a]=0
in .(Z. ;) for any A e (k). From Proposition 5 and the fact that
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f,(A)O for some A e (k) we obtain (i).
(ii) It is sufficient (and necessary) that f=f2. If f(A)f2(A) for

some A e q(k) and f(A)O, then [F]=0 from the equation (,). This
is a contradiction.
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