35. On Stationary Point Sets of $(\mathbb{Z}_2)^k$ -Manifolds

By Katsuhiro KOMIYA Yamaguchi University

(Comm. by Kenjiro SHODA, M. J. A., March 12, 1975)

1. Definitions. In order to state the results we define some notions.

Let G be a finite group, and $\mathcal{F}, \mathcal{F}'$ be families of subgroups of G with $\mathcal{F} \supset \mathcal{F}'$. An $(\mathcal{F}, \mathcal{F}')$ -free G-manifold is a pair (M, φ) consisting of a compact differentiable manifold M and a differentiable G-action $\varphi: G \times M \rightarrow M$ on M such that

(i) if $x \in M$, then the isotropy group $G_x \in \mathcal{F}$, and

(ii) if $x \in \partial M$, then $G_x \in \mathcal{F}'$.

We may define the unoriented bordism module $\mathfrak{N}_*(G; \mathcal{F}, \mathcal{F}')$, over the unoriented cobordism ring \mathfrak{N}_* , which consists of bordism classes of $(\mathcal{F}, \mathcal{F}')$ -free *G*-manifolds (see Stong [2]). If \mathcal{F}' is empty, we write $\mathfrak{N}_*(G; \mathcal{F})$ for this module.

Let F be the stationary point set of a G-mainfold (M, φ) , and $F = \bigcup_i F_i$ be the decomposition by the connected components. Let $(D(\nu_i), \varphi_i)$ be the G-manifold consisting of the normal disc bundle $D(\nu_i)$ of F_i and the G-action φ_i induced by φ . We suppose that any connected component F_i satisfies

$$[D(\nu_i), \varphi_i] = [F_i][D(V_i), \Psi_i]$$

in $\mathfrak{N}_*(G; \mathcal{F}_A, \mathcal{F}_P)$ for some positive dimensional *G*-representation (V_i, ψ_i) , where \mathcal{F}_A (resp., \mathcal{F}_P) is the family of all subgroups (resp., all proper subgroups) of *G* and $D(V_i)$ is the unit disc of V_i . We say in this case that *F* has a trivial normal bundle in the weak sense. When we further suppose that dim $F_i = \dim F_j$ implies $(V_i, \psi_i) \cong (V_j, \psi_j)$ as *G*-representations, we say that *F* has a trivial normal bundle (in the sense of Conner-Floyd [1; § 42]).

2. Statement of results. In this note we study the case in which G is $(Z_2)^k$, the direct product of k copies of the multiplicative cyclic group $Z_2 = \{1, -1\}$. We obtain the following results:

Theorem 1. If the stationary point set F of a closed $(Z_2)^k$ -manifold (M, φ) has a trivial normal bundle, then we obtain

(i) [F]=0 in \mathfrak{N}_* , and

(ii) $[M, \varphi] = 0$ in $\mathfrak{N}_*((\mathbb{Z}_2)^k; \mathcal{F}_A)$.

Corollary 2 (Conner-Floyd [1: (31.3)]). The stationary point set F of a positive dimensional closed $(Z_2)^k$ -manifold can not consist of one point.

K. Komiya

Theorem 3. Let F be the stationary point set of a closed $(Z_2)^k$ manifold. If F has a trivial normal bundle in the weak sense, and consists of two connected components F_1, F_2 , we obtain

(i) $[F_1] = [F_2]$ in \Re_* , and

(ii) if $[F_1] = [F_2] \neq 0$, then F has a trivial normal bundle.

3. Preliminaries of proofs. First we state the known results.

Proposition 4. There exists a short exact sequence

 $\begin{array}{c} 0 \longrightarrow \mathfrak{N}_{\ast}((Z_{2})^{k}; \mathcal{F}_{A}) \xrightarrow{j} \mathfrak{N}_{\ast}((Z_{2})^{k}; \mathcal{F}_{A}, \mathcal{F}_{P}) \xrightarrow{\partial} \mathfrak{N}_{\ast}((Z_{2})^{k}; \mathcal{F}_{P}) \longrightarrow 0, \\ where j is induced by the inclusion (\mathcal{F}_{A}, \phi) \subset (\mathcal{F}_{A}, \mathcal{F}_{P}) and \partial is induced \\ by restricting a (Z_{2})^{k}-action to boundary. \end{array}$

This proposition was obtained in the proof of Proposition 2 in Stong [2].

Let \mathcal{F}_1 be the family consisting of only the identity subgroup of Z_2 . Then $\mathfrak{N}_*(Z_2; \mathcal{F}_1)$ is the bordism module of free involutions on closed manifolds.

Proposition 5 (Conner-Floyd [1; Theorem 23.2]). $\Re_*(Z_2: \mathcal{F}_1)$ is the free \Re_* -module on generators {[S^n, a] | $n=0, 1, 2, \cdots$ }, where a is the antipodal involution on sphere.

For a positive integer k let S(k) be the set of non-empty subsets of $\{1, 2, \dots, k\}$. For any $A \in S(k)$, let (V_A, φ_A) be the real 1-dimensional $(Z_2)^k$ -representation defined by

$$\varphi_A((t_1,\cdots,t_k),v)=(\prod_{i\in A}t_i)\cdot v$$

for $(t_1, \dots, t_k) \in (\mathbb{Z}_2)^k$ and $v \in V_A$. Then $\{(V_A, \varphi_A) | A \in \mathcal{S}(k)\}$ gives a complete set of non-trivial irreducible representations of $(\mathbb{Z}_2)^k$.

Let Z^+ be the non-negative integers. For any correspondence $f: \mathcal{S}(k) \to Z^+$ we define a $(Z_2)^k$ -representation $(V(f), \varphi(f))$ to be the direct sum $\bigoplus_{A \in \mathcal{S}(k)} (V_A, \varphi_A)^{f(A)}$ where $(V_A, \varphi_A)^{f(A)}$ is the direct sum of f(A) copies of (V_A, φ_A) . If two correspondences $f, g: \mathcal{S}(k) \to Z^+$ satisfy $f(A) \leq g(A)$ for all $A \in \mathcal{S}(k)$, we may regard V(f) as a $(Z_2)^k$ -subspace of V(g).

We denote the unit dise, the unit sphere of V(f) by D(f), S(f), respectively.

By elementary computations we obtain

Lemma 6. For any $A \in S(k)$ there is a subgroup H_A of $(\mathbb{Z}_2)^k$ such that

(i) H_A is isomorphic to $(Z_2)^{k-1}$, and

(ii) for any correspondence $f: S(k) \to Z^+$ the stationary point set of $(S(f), \varphi(f)|H_A)$ is $S(f(A)\varepsilon_A)$, where $f(A)\varepsilon_A$ is the correspondence defined by

$$f(A)\varepsilon_A(A') = \begin{cases} f(A) & \text{if } A' = A \\ 0 & \text{if } A' \neq A. \end{cases}$$

Let F be the stationary point set of a closed $(Z_2)^k$ -manifold (M, φ) , and F_i $(i=1, \dots, s)$ be the connected components of F. Let $(D(\nu_i), \varphi_i)$ No. 3]

be the $(Z_2)^k$ -manifold consisting of the normal disc bundle of F_i and the $(Z_2)^k$ -action induced by φ . We suppose that F has a trivial normal bundle in the weak sense. Then

$$D(\nu_i), \varphi_i] = [F_i][D(f_i), \varphi(f_i)]$$

in $\mathfrak{N}_*((\mathbb{Z}_2)^k; \mathcal{F}_A, \mathcal{F}_P)$ for some correspondence f_i .

Lemma 7. Let $F = \bigcup_{i=1}^{s} F_i$ be the stationary point set of (M, φ) as in above, then we obtain

$$\Sigma_{i=1}^{s}[F_{i}][S^{f_{i}(A)-1}, a] = 0$$

in $\mathfrak{N}_*(\mathbb{Z}_2; \mathfrak{F}_1)$ for all $A \in \mathcal{S}(k)$. (Here we consider $S^{f_i(A)-1}$ to be the empty set for $f_i(A)=0$.)

Proof. In the exact sequence of Proposition 4

$$egin{aligned} 0 =& \partial j([M, arphi]) =& \partial (arsigma_i [D(
u_i), arphi_i]) \ =& \partial (arsigma_i [F_i] [D(f_i), arphi(f_i)]) \ =& arsigma_i [F_i] [S(f_i), arphi(f_i)]. \end{aligned}$$

This means that there exists an \mathcal{F}_P -free $(Z_2)^k$ -manifold (N, Ψ) such that $(\partial N, \phi) = \bigcup_i F_i \times (S(f_i), \phi(f_i)).$

For $A \in \mathcal{S}(k)$, let H_A be a subgroup of $(Z_2)^k$ obtained by Lemma 6, and H_A^c be a complement of H_A in $(Z_2)^k$. We denote by N_A the stationary point set of $(N, \mathcal{F} | H_A)$. Then, by Lemma 6,

$$\partial N_A, \Psi | H_A^c \rangle = \bigcup_i F_i \times (S^{f_i(A)-1}, a).$$

Since $(N_A, \Psi | H_A^c)$ is a free Z_2 -manifold, $\Sigma_i[F_i][S^{f_i(A)-1}, a] = 0$ in $\mathfrak{N}_*(Z_2; \mathcal{F}_1)$.

4. Proof of Theorem 1. (i) For any *i* with $0 \le i < \dim M$, let F^i be the *i*-dimensional component of *F*, and $(D(\nu_i), \varphi_i)$ be the $(Z_2)^k$ -manifold obtained from the normal disc bundle of F^i . Since *F* has a trivial normal bundle

$$[D(\nu_i), \varphi_i] = [F^i][D(f_i), \varphi(f_i)]$$

in $\mathfrak{N}_*((\mathbb{Z}_2)^k; \mathcal{F}_A, \mathcal{F}_P)$ for some f_i . By Lemma 7

 $\Sigma_{i}[F^{i}][S^{f_{i}(A)-1}, a] = 0$

in $\mathfrak{N}_*(Z_2; \mathcal{F}_1)$ for all $A \in \mathcal{S}(k)$. Hence, by Proposition 5, $[F^i]=0$ in \mathfrak{N}_* for i with $f_i(A) \neq 0$. For any i we may appropriately choose A in $\mathcal{S}(k)$ so that $f_i(A) \neq 0$. Thus $[F^i]=0$ for all i, i.e., [F]=0.

(ii) In the exact sequence of Proposition 4

 $j([M,\varphi]) = \Sigma_i[F^i][D(f_i),\varphi(f_i)] = 0.$

Since j is monic, $[M, \varphi] = 0$ in $\mathfrak{N}_*((\mathbb{Z}_2)^k; \mathcal{F}_A)$.

5. Proof of Theorem 3. (i) Let $(D(\nu_i), \varphi_i)$ be the $(Z_2)^k$ -manifold obtained from the normal disc bundle of F_i for i=1,2. Then, by the assumption,

 $[D(\nu_i), \varphi_i] = [F_i][D(f_i), \varphi(f_i)]$ in $\mathfrak{N}_*((Z_2)^k; \mathcal{F}_A, \mathcal{F}_P)$ for some f_i . By Lemma 7 (*) $\Sigma_i[F_i][S^{f_i(A)-1}, a] = 0$ in $\mathfrak{N}_*(Z_2; \mathcal{F}_1)$ for any $A \in \mathcal{S}(k)$. From Proposition 5 and the fact that $f_i(A) \neq 0$ for some $A \in \mathcal{S}(k)$ we obtain (i).

(ii) It is sufficient (and necessary) that $f_1=f_2$. If $f_1(A) \neq f_2(A)$ for some $A \in \mathcal{S}(k)$ and $f_1(A) \neq 0$, then $[F_1]=0$ from the equation (*). This is a contradiction.

References

- P. E. Conner and E. E. Floyd: Differentiable Periodic Maps. Springer-Verlag (1964).
- [2] R. E. Stong: Equivariant bordism and $(Z_2)^k$ actions. Duke Math. J., 37, 779-785 (1970).