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On Some Noncoercive Boundary Value
Problems or the Laplacian

By Kazuaki TAIR,
Department of Mathematics, Tokyo Institute of Technology

(Comm. by K6saku YOSIDA, M. J. A., March 12, 1975)

1. Introduction. Let/2 be a bounded domain in R with bound-
ary/ of class C. D-/2 U 2" is a C-manifold with boundary. Let a,
b and c be real valued C-funetions on F, let be the unit exterior
normal to 2" and let a and fl be real C-veetor fields on /.

We shall consider the ollowing boundary value problem" For
given unetions f defined on/2 and defined on/ find u in/2 such that

(2--A)u f in
(*) I u=_a + + + (b + on

Here 0 and A-3/3x[/3/3x/... /3/3x. The problem (,) in the
case that/(x)0 on/’, i.e., the oblique derivative problem was investi-
gated by many authors (cf. [2], [6], [7], [8]), but the problem (,) in the
case that fl(x)0 on F was treated by a few authors, e.g., Valnberg
and Gruin [12] (see also [5]), whose results we shall first describe
briefly. For each real s, we shall denote by H’(t2) (resp. H’(F))the
Sobolev space on/2 (resp. F) of order s and by II, (resp. I[,) its norm.

If a(x) > Ifl(x)] on/ where ]fl(x)] is the length of the tangent vector
/(x), then the problem (,) is coercive and the following results are valid
for all s3/2 (cf. [9])"

i) For every solution u eHt([2) of (,) with f e H’-(t2) and
e H-/(F) we have u e H(9) and an a priori estimate"

where t <. s and C>0 is a constant depending only on 2, s and t.
ii) If f e H*-(2), e H-/(F) and (f, ) is orthogonal to some

finite dimensional subspace of C())C(F), then there is a solution
u e H’()) of (,).

iii) If 0 is sufficiently large, then we can omit Ilu [[, in the right
hand side of (1)and for every f e H*-(/2) and every e H*-/(F) there
is a unique solution u e H(/2) of (,).

If a(x)>lfl(x)] on/’ and a(x)=lfl(x)l holds at some points of/’, then
the problem (,) is noncoercive. Valnberg and Gruin [12] treated the
problem (,) in the case that n=2, a(x)l, a(x)=0, [fl(x)[-_-I on F.
Under the assumption that b(x)+ic(x)O on/’, they proved smooth-
ness, an a priori estimate and existence theorems for the solutions of
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(.), which involve a loss of 1 derivative compared with the results i)
and ii) (see [12], Theorem 19).

In this note we shall treat the problem (,) in the case that n is
arbitrary and that a(x)>= I(x)l on F. Under the assumptions expressed
in terms of differential geometry such as the second fundamental form
of the hypersurface FR, the mean curvature of F, the divergence
of the vector field a and so on (see (B-1), (B-2),, (B-I), (B-2) and (C)),
we shall give smoothness, an a priori estimate and existence theorems
for the solutions of (.), which involve a loss of 1 derivative compared
with the results i), ii) and iii) (Theorem 1 and Theorem 2). Even in
the case that (x)--0 on F and hence that a(x)>_0 on F, these results
are new (cf. [2], [7], [8]). The details will be given somewhere else.

The author is very much indebted to Prof. Daisuke Fujiwara and
Mr. Kazuo Masuda for helpful conversations.

2. Preliminaries. Since =>0, for every e C(F) we can unique-
ly solve the Dirichlet problem"

(2--A)w-0 in/2,

w= on/,
hence we can define the Poisson operator () by w---(). The map-
ping T()" --.() ]r is a first order pseudodifferential operator on
F (cf. [5], [6], [12]) and the problem (.) can be reduced to the study of
T(2) by the same argument as the proof of Theorem 2.2 of Taira [11]
(cf. [6], [7], [12]). The principal symbol of T(2) is

(a(x) Il-(x, )) +i(x, )
(see [5], 3). Here x= (x, x, ..., x_) are some local coordinates in F
and $=($, $, ..., $_) are the corresponding dual coordinates in the
cotangent space T*F and Il is the length of with respect to the
Riemanniaa metric of /" induced by the natural metric of R, and
a(x, ) (resp. fl(x, )) is the principal symbol of the vector field a(x)/i
(resp./(x) / i).

Let A=(1-)/ where ’ is the Laplace-Beltrami operator corre-
sponding to the Riemannian metric of /. To apply Theorem 3.1 of
Melin [10] to Re (A-T()) where s>__3/2 (see Proposition), we have to
make a digression. Let p(x, D=a(x) Il--(x, ). Then p(x, )__>0 on
the space of non zero cotangent vectors T*/’\0 if and only if a(x)>-I(x)l
on F. Hence we assume that p>__0 on T*F\O. Let X={pe T’F\0;
p(p)=0}. For every tangent vector u of T*F at p e X, let v be some
vector field on T*F equal to u at p and define a quadratic form a,(u, u)
by the equation"

a(u, u)=(vp).
Siace p>__O on T*F\O, it follows that %(u,u) is independent of the
choice of v. Let T(T*F) be the complexification of the tangent space
T,(T*F) of T*I" at p e 27. We consider the symplectic form
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n-1

a---- , dj A dx on T*F

aad the quadratic form a as bilinear orms on T(T*F)T(T*F).
Since a is non-degenerate, we can define or every p e a linear map

A" T(T*F)T(T*F) by the equation"
a(u, Av)=a(u, v), u, v e T(T*).

It is easily seen that the spectrum of A is situated on the imaginary
axis, symmetrically around the origin (see [10], 2). For every p e ,
we shall denote by Tr H,(p) the sum of the positive elements in
i. Spectrum (A) where each eigenvalue is couated with its multiplicity.

The subprincipal symbol of Re (T()) is
1 div (x) + a(x)(- (, )--(n- 1)M(x))b(x)-

(cf. [5], 3). Here div a is the divergence of the vector field a and M(x)
is the mea curvature at x of the hypersurface FR and w is the
second fundamental form at x of F, and e TF is the tangent vector
of F at x corresponding to e TF by the duality betweea TF and
TF with respect to the Riemannian metric of F, where TF (resp. TF)
is the tangent (resp. cotangent) space of F at x. Further, the sub-
principal symbol of Re (A-T()) oa X={(x,)e T*F0 a(x)--fl(x,)
=0} is

div a(x))I1’-+ a(x)(ll- =(, )--(n--1)M(x))I1-b(x)-
2

+ {11’’-, a(x, )}--a(x, )div (x).

Here

{ll.-,
and -- a i_) a,(x)= E (I

is real C-vector field on F defined or 0 (cf. [1], Proposition 5.2.1).. Results. Applying Theorem 3.1 of Melin [10] to Re (A’-T(2))
where s 3/2 and by the same argument as the proof of Theorem 6 of
Fujiwara [4], we can obtain

Proposition. Let s 3/2, t s-- 3/2. There exist constants Cs 0
and C depending only on 2, s and t such that the estimate
( 3 ) Re (A-T(),)C I1]-/-C
holds for all e C(F) if and only if the following assumptions (A),
(B-1) and (B-2) hold"
(A) a(x) I(x) on P.
(B-l), At every point x e F where a(x)=0, the inequality

2b(x)-- div a(x) + {1i-, a(x, )}--a(x,.) div (x)0
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holds for all e T*F with I1=1 (see (2)).
(B-2) At every point x e 1" where a(x)=lfl(x)]O, the inequality

(Tr H,(x, ) + 2b(x)--div a(x) + a(x) a(x)" a(x)

holds for e TF corresponding to (x)/ a(x) e TF by the duality be-
tween TF and TF with respect to the Riemannian metric of F (see
(2)).

Furthermore, if )0 is suciently large, then we can omit in
the right hand side of (3).

Remark 1. It follows from the assumption (A) that at every point
x e F where a(x)=O, Tr H,(x, )=0 for all e TF with =1.

Remark 2. If the set Fo= {x e F; a(x) fl(x) ]} is an (n--2)-dimen-
sional regular submanifold of F and the vector field a is transversal to
F0, then for every s 3/2 we can construct a C-function h on F such
that h(x) > 0 on F and that the estimate (3) hold with A2-3T() replaced
by hA2-3T(2) (cf. [8], Lemma 4).

By the same argument as the proof of Theorem 2.2 of Taira [11],
we can obtain from Proposition

Theorem 1. Assume that
(A) a(x) (x) on
and that the assumptions (B-1) and (B-2) hold for some s3/2.

Then we have"
i)’ for every solution u eH-(9) of (.) with f eH-2(9) and

e H-3/2(F) we have an a priori estimate"
(4) lul_c,(]/]_+]_+lu])
where t s-1 and CO is a constant depending only on , s and t;

iii)’ if 0 is suciently large, then we can omit ]u]t in the right
hand side of (4) and for every f e H-2(9) and every e H-3/2(F) there
is a unique solution u e H-(9) of (.).

Remark . Further, we can prove that if f e H-(9), e H-/2(F)
and (f, ) is orthogonal to some finite dimensional subspace of H+(9)
H-+/(F) where H+(9) is the dual space of H-2(9), then there is
a solution u e H-(9) of (.).

Remark 4. If the assumptions (B-1) and (B-2) hold for all
s3/2, then by the same argument as the proof of Theorem 7.4 of
Egorov and Kondrat’ev [2] we can prove that every solution u e H-(9)
of (.) with f e H-(9) and e H-/2(F) belongs to H(9).

Further, applying Theorem 1 of Fedil [3] to T(2), we can obtain
Theorem 2. Assume that

(A) a(x) ](x) on
and that the following assumptions (B-l), (B-2) and (C) hold"
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(B-l) At every point x e F where a(x)=0, b(x) O.
(B-2) At every point x e F where a(x)=l(x)lO, the inequality

Tr H,(x, ) + 2b(x)-- div a(x)
(5) +a(x)(o((x). (x))_(n_l)M(x))>Oa(x)’a(x)
holds for e T*F corresponding to fl(x)/a(x) e TxF.
(C) There exists a constant CoCO such that the inequality

Ida(x, )12 <= Co(a(x) (x, ))
holds for all x e 1" and all e T*F with I1= 1. Here da is the exterior
derivative of a(x,) and Idol is the length of the cotangent vector d
of T*F with respect to the natural metric of T*F induced by the Rie-
mannian metric of F.

Then the assumptions (B-1)8 and (B-2) hold for all s (hence by
Theorem 1 we have for all s3/2 the results i)’ and iii)’) and we have
for all s 3/2

i)" for every solution u e H(9) of (.) with fells-2(9) and
e H-/(F) where t s--1, we have u e H-(9)

ii)’ if f e H-(9), e H-/(F) and (f ) is orthogonal to some

finite dimensional subspace of C()C(F), then there is a solution
u e H-(9) of (.).

Remark 5. The example of Kato [8] shows that the assumption
(C) is necessary for Theorem 2 to be valid.

Remark 5. In the case that n=2, the inequality (5) is reduced to
the following inequality (6):
( 6 ) Tr Hl(x,)+2b(x)--div a(x)O,
since

( (x) (x) )--(n--1)M(x)--O.a(x) "a(x)
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