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53. On a Characterization of L*.well Posed Mixed Problems
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By Rentaro AGEMI
Department of Mathematics, Hokkaido University

(Comm. by Kinjird6 KUNUGI, M. J. A., April 12, 1975)

§ 1. Introduction and results. Let 2 be a domain in an »-
dimensional euclidean space R* with smooth boundary 02. Let P be
a t-strictly hyperbolic operator of second order defined in the cylinder
R'x 2 and B a boundary operator of first order defined on R'XxaQ.
Furthermore we assume that the boundary 92 is non-characteristic for
P and B and the coefficients of P and B are smooth and constant out-
side a compact set of R'x 2. We then consider the following mixed
problem (P, B):

P(t, x; D,, D)u(t, )= f(, x) t,x)eR'xQ2 t>0,
B(t,x; D,, D )u(t, x)=g(t, x) (t,x) e R*xa2 t>0,
Diu(0, x)=h,(x) (G=0,1) xzeQ.
Here D,=—1i(9/dt), Dy=—1(0/0xy) (k=1,..-,n)and D,=(D,, - -+, D,).

The aim of this paper is to show the following

Theorem. A mixed problem (P, B) is L*-well posed if and only if
every constant coefficients problem frozen the coefficients at a boundary
point is L*-well posed.

For the L*-well posedness of mixed problems see [3].

The “only if” part of Theorem is a special case of [2], Theorem 1
which is proved by using the results in [4], [6]. When the coefficients
of B are real valued, the author characterized, using the method in [3],
L2-well posed mixed problems with constant coefficients by the inequali-
ties among the coefficients and proved the “if” part of Theorem by
energy method ([11). When the coefficients of B are complex valued, a
characterization of L*well posed mixed problems with constant
coefficients is obtained in the same direction as real case ([8]). In
general, a mixed problem is L?well posed whenever Lopatinski deter-
minant does not vanish ([5],[10]). Under the assumption of L*-well
posedness, Lopatinski determinant does not vanish in the interior of
the most inner normal cone (11]) and also does not vanish for Im z<<0
where ¢ is the covariable of £ ([4]). When Lopatinski determinant
vanishes only on the real points where the roots 1 are simple, a mixed
problem is L:-well posed in the case of second order ([2],[9]). Here 2
is a root of characteristic polynomial with respect to the covariable of
normal direction to 2. Thus the “if” part of theorem is proved if a
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priori L*-estimate holds in a neighbourhood of a real point such that 2
is double. In this paper we shall construct a symmetrizer near such a
point using the considerations (§ 2) in [5], [9] and the results (§ 3, Lemma
1) in [8].

§ 2. Preliminaries. For the sake of simplicity of description we
shall prove Theorem in the case when P is d’Alembertian and Q2 is the
half space R* ={x ¢ R"; x=(2/, ,), ©,>0}. However, our argument is
applicable to a general case. We shall consider a problem (P, B):

Pu:(—DE-{— % D§)u= f in R1*,
=

Bu= (Dn—ni b,(t, x)D,;—c(t, x’)Dt)u:g on R».
j=1

In order to reduce our problem (P, B) to one for 2 X 2 system of pseudo-
differential operator of first order, put

U="(u,, u)="(du, Dyu)  for ue Cy(R,
where

Au=Q@r)™" I eit+7) A(z, 0)il(z, 0, ©,)dédo,
Rn

a=f e~ttrady(t o x)didx’,
Rn

Mz, a)=(zf+|aP)?, t=&—iy(y=0), occR".
Then our problem becomes
DnU—MAU—':t(O, f):F in R’iﬂ’
Uy—SU, = ¢ on R”.
Here the symbols of pseudo-differential operators M, s with para-
meters y and z, are as follows:

M(f’,u’):( 0 1

,L_/z_lo./lz 0

st @', <, ) =52 b,(t, )+ olt, @)’.
=

) ('=1A(z,0)7", 0’ =0A(z,0)7Y),
(1)

We shall construct a symmetrizer Q in the form ([5]):
R (/B AN, Of)
(2) Q(t,x,é,a,r)—<dl dz)HT(—f o)
where a positive constant f and the real symbols d,(t, %, &, ¢") (=0, 1,
2) of order zero are determined in §3. The integration by part gives
2Im (D,U—-MAU, QU),,
=U, QU+ Im (*MQ—QM)U, U),,+ (ower order term),

where

W, )y, =(e7™U, €T V) paipnrsy,  ANA U, VD, = (67U, €77V) fa(pny-
If
(3) dy=d(§"—|d’P),

then it follows from (1) and (2) that
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(4) (*MQ—QM)(t, z, 5/, 0", r/)=2ir/(2d1§/“£(§/,—'|0'/|2) df/) +0(T/2)
2
On the other hand, using boundary condition u,=su,+ g we get
( 5 ) <U’ QU> 0,7
={(dy+2d, Re s+d, |sP+27f Im $)us, w, ,+ R, 9),
where |R(U, 9)|<CKA™*U; ,+<{4"*g» ). Using (3) the symbol of
pseudo-differential operator appeared in the first term of the right
hand side in (5) can be written by the form K-+y'H, where H(t, 2/, &,
d’,7) is of order zero and
(6) K(t, 2', &, 0")=2d, Re 8,4+ d,(|s, '+ (§”*—|a’[")),
s(t, o', o/, ) =8,(t, ¥/, &, ") —1ic(t, )y’
Now we shall consider a real point stated in Introduction at which
Lopatinski determinant vanishes and 2 is double. Recall the definition
of Lopatinski determinant R for our problem (P, B):
R(t, o, 7', 0)=+7"—|df—s(t, 2, ¢/, 0",
where +/z2—[¢’F is a root in 1 of 2>+|¢’’—z?=0 whose imaginary part
is positive if y=—Im ’>0. Hence, in this case, such a real point
(ty, 20, 0, &, a0)(7’=0) satisfies the relations:
(7) gl=los and sy(ty, x5, &, 00) =0.
Suppose that the following inequalities hold in a neighbourhood of a
real point satisfying (7):
(8) K(,2,&,0)20 and Im (*MQ—QM)(t, x,&,d,¢)=Cy'1.
Then a priori L*-estimate follows from a sharp form of Garding in-
equality ([7]) and [9], Lemma 7.2 (the treatment of the term <{y’Hu,,
U, ; that is, for a large constant y>0,
7 eUR,=CUF IR, + <4908, + 1l uli,),

where the support of symbol ¢(¢, , &, ¢’, ¥) of order zero is contained in
a small neighbourhood of a point satisfying (7).

We shall introduce a new variable ¢ in a neighbourhood of a point
satisfying (7):
(9) E=t—lo| if £>0 or {=1+]g|if £<0.
Hereafter we shall consider the first case, since the argument below is
applicable to the second case. Then we have

n-1
10) s(t, ¢/, &, 0")=c(t, x) |o’|+ ]Z‘=1 b,(, x)d;+c(t, x) Re &’
=a(t, 2’,0")+c(t, 2") Re {,

where the second equality is.the definition of «. Putting as in [9], § 7
11) d,(t, ', &, )=}, x', o)+ di(¢, 2, 0") Re L,
a,@, %', ¢, a)=dy(t, x’, 0")
(Remark that, in [9], di=0 and the linear term in Re&’ of d, is
cosidered), then we can rewrite K as a polynomial in Re ¢’ of degree 2:

K(t,x',¢',0)=K,+2K, Re '+ K, (Re {')?,
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where
K, x',0")=2d} Re e+ d} ||,

12) K,(t, 2, 0")=d’ Re c+di Re a+di(o’| + Re (2a)),
K,(t, 2, 0")=2d} Re c+d5(1+|cP).

§3. A construction of a symmetrizer Q. In this section we
shall show that (8) holds in a small neighbourhood of a point satisfying
(M, if
(13) di=lo’|+Re (ca), di=1+|cf, di=—Rec,
and f is a large positive constant. Here we remark that the choice of
d, and d, is a natural extension of one in [1]. It follows from (12) and
(13) that
(14) K,=2|¢’/| Rea+Re ¢c(Re a))*—Re c(Im «)*+2 Im ¢ Re « Im ,

K,=1+|cP Rea, K,=+|cP) Rec.
In order to prove that K=>0, we need the following lemmas.

Lemma 1 ([8]). A frozen problem (P, B), ., at a boundary point
(t, 2/, 0) is L*well posed if and only if, for every g, either

(I) when Rea=Re =0, 1+|o|?Im a Imp>0 or

(II) when (Re a)*+ (Re p)*+0,

A= ( 2|0/'Rea |o|™?Im («f)
lo|2Im (¢f) 2|o['Rep
where a is considered as a fuction in ¢ and

15) B(t, @, 0)=c(t, ) la|—'j§ b,(t, ),

Hereafter g is considered as a function ¢’.
Lemma 2.

(Kl)Z_KoKz): _4_1(1 + ICIZ) Ia’lz (det A)

)go,

Proof.
(Kl)z_"KoKz
=(1+|c)H*(Re a))—A+|c’) Re ¢ (2 |¢'| Re a+ Re c(Re a)*
—Rec(Im a)?*+2Im cRea Im «)
=—QA+|cP)(Re a2 |o’| Re c—Re a) —(Re ¢ Im a—Im ¢ Re w)?.
Using the relations Re «+Re f=2|¢’| Re ¢ and 2(Re ¢ Im «—Im ¢ Re o)
=Im (af), we obtain the lemma.
Lemma 3. If the case (1I) in Lemma 1 is valid, then we have
K,=0 and if K,=0, K,=0.
Proof. Put
X=2"¢/|Im (@f), Y=|o'|"Re (jzi bjafj).
Then the case (II) is valid if and only if
Rec>0 and X*+Y?<(Rec).
Furthermore we have
(16) l¢’|"* K,=(Re ¢)~}(2 Re ¢(Y +Re ¢) +|c[? (Y + Re ¢)*—X?).
In fact, since Re a=Re ¢+ Y, the left hand side of (16) becomes
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2(Rec+Y)+RecRec+7Y)
+Im oc(Re cImec+2Y Imc—Reclo’/|"' Im (% b,o’,)).
Using the relation -
A7  X=2"'|¢/|" Im (@) =Re ¢ |o’|"! Im (jzi b,a;)-y Im ¢,

the above quantity is equal to
2Rec+Y)+Rec(Rec+Y) +Ima(ImecRec+Y)—X).

Again using (17), Im a=(Re ¢)"! Im ¢(Re ¢+ Y)+X) and hence (16) is
proved. By a simple computation, we see that a circle X2+ Y?=(Re ¢)*
and a hyperbola K,=0 have only one common point (X, Y)=(0, —Re ¢)
at which two curves tangent each other to second order and a hyper-
bola K, intersects to X-axis at two points (+Re ¢(2+ |c[)"? 0). There-
fore the lemma is proved.

Now we return to the proof of (8). Using (10) and (15), it follows
from Lemma 1 that Re ¢=0. Then we see from (14) that K,=>0. In
the case (I) it holds that Re «=0 and Re ¢=0. Hence we see from this
and (14) that K=0. Remark that we do not use the inequality in the
case (I). In the case (II) we see from Lemmas 1,2,3 that K=0. To
prove the second assertion in (8), we remark that Re¢’, Rea and Im «
are small in a neighbourhood of a point satisfying (7). Hence, in such
a neighbourhood, that d,>0 follows from (11) and (18). Therefore, it
follows from (4) that the second assertion in (8) holds if f be taken
large.
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