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1. Introduction and results. Let /2 be a domain in an n-
dimensional euclidean space R with smooth boundary 312. Let P be
a t-strictly hyperbolic operator of second order defined in the cylinder
R/2 and B a boundary operator of first order defined on R
Furthermore we assume that the boundary 312 is non-characteristic for
P and B and the coefficients of P and B are smooth and constant out-
side a compact set of RX. We then consider the following mixed
problem (P, B)"

P(t, x D, D)u(t, x) f(t, x) (t, x) e R 2 t O,
B(t,x;Dt, D)u(t,x)=g(t,x) (t,x)eR312 t>O,
Dtu(O, x)= hj(x) (]=0, 1) x e/2.

Here Dt=--i(3/3t), D=--i(3/3x) (k=l,...,n) and D=(D,...,D).
The aim of this paper is to show the following
Theorem. A mixed problem (P, B) is L-well posed i and only if

every constant coefficients problem frozen the coefficients at a boundary
point is L-well posed.

For the L-well posedness of mixed problems see [3].
The "only if" part of Theorem is a special case o [2], Theorem 1

which is proved by using the results in [4], [6]. When the coefficients
of B are real valued, the author characterized, using the method in [3],
L-well posed mixed problems with constant coefficients by the inequali-
ties among the coefficients and proved the "if" part of Theorem by
energy method ([1]). When the coefficients of B are complex valued, a
characterization of L-well posed mixed problems with constant
coefficients is obtained in the same direction as real case ([8]). In
general, a mixed problem is L-well posed whenever Lopatinski deter-
minant does not vanish ([5], [10]). Under the assumption of L-well
posedness, Lopatinski determinant does not vanish in the interior of
the most inner normal cone (11]) and also does not vanish for Im
where r is the covariable of t ([4]). When Lopatinski determinant
vanishes only oa the real points where the roots 2 are simple, a mixed
problem is L-well posed in the case of second order ([2], [9]). Here
is a root of characteristic polynomial with respect to the covariable of
normal direction to 3t. Thus the "if" part of theorem is proved if a
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priori L2-estimate holds in a neighbourhood of a real point such that 2
is double. In this paper we shall construct a symmetrizer near such a
point using the considerations ( 2) in [5], [9] and the results ( 3, Lemma
1) in [8].

2. Preliminaries. For the sake of simplicity of description we
shall prove Theorem in the case when P is d’Alembertian and/2 is the
half space R+--(x e R; x--(x’, x), x0}. However, our argument is
applicable to a general case. We shall consider a problem (P, B):

Pu=(--Dt+ D})u=f in
j=l

j=l

In order to reduce our problem (P, B) to one for 2 2 system of pseudo-
differential operator of first order, put

U (u, u) (u, Du) for u e C(+),
where

Au=(2u) | e(t/’)A(r, a)t(r, a, x)dda,
JRn

t=[ e-(t+’)u(t, x’, x)dtdx’,
JR

A.(r,a)=(v+a)/, r=--i(0), a e R-.
Then our problem becomes

DU--MAU=t(O, f)=F in

u2-- su g on Rn.
Here the symbols of pseudo-differential operators M, s with para-

meters and x are as follows"

M(’, a’) ( 0 1) (,=A(,)_,,=aA(,a)_)
r,_]a,2 0(1) -s(t, x’, v’, a’)= b(t, x’)a + c(t,

We shall construct a symmetrizer Q in the form ([5])"
0( 2 ) Q(t, x, ’, a’, )=

d d -f
where a positive constaat f aad the real symbols d(t, x, ’, a’) (]=0, 1,
2) of order zero are determined ia 3. The integration by part gives

2 Im (DU--MAU, QU)0.r
=(U, QU}o.r+ Im ((*MQ-QM)U, U)0,r+ (lower order term),

where
(u, V)o,r=(e-tu, e-rtv)(+,) aad (u, V}o,r=(e-rtu, e-tv)(,).

( 3 ) do=d(n-]a’]),
thea it ollows from (1) aad (2) that
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4 ) (*MQ-QM)(t,x,’,a’, y’)--2iy’ 2dl’--f(’-Ia’]2)
d.’

On the other hand, using bouadary condition u=su+ g we get

( 5 ) (U, QU)o,r
((d0 + 2d Re s+ d s] + 2’f Im s)u, U)o,r+ R(U, g),

/2where R(U,g)]C((A-/U)],r+(A g)o,r). Using (3) the symbol of
pseudo-differential operator appeared in the first term of the right
hand side in (5) can be written by the form K+ y’H, where H(t, x’, ’,
a’, r) is of order zero and

K(t, x’, ’, a’) =2d Re So + d(So + (’--a’)),(6)
s(t, x’, r’, a’)= So(t, x’, ’, a’)- ic(t,

Now we shall consider a real point stated in Introduction at which
Lopatinski determinant vanishes and 2 is double. Recall the definition
of Lopatinski determinant R for our problem (P, B)"

R(t, x’, r’, a’)= rn--a’]2--s(t, x’, v’, a’),
where rn--]a’ is root in 2 of 2 +]a’]--vn:O whose imaginary part
is positive if y’=--Im r’>0. Hence, in this case, such a real point
(t0, x, 0, , a)(’--0) satisfies the relations"
(7) lq0--’] and So(to, X,o,a) O.
Suppose that the ollowing inequalities hold in a neighbourhood of a
real point satisfying (7)"
( 8 ) K(t, x’, ’, a) 0 and Im (*MQ- QM)(t, x, ’, a’, r’) Cy’I.
Then a priori L-estimate follows rom a sharp form o Grding
equality ([7]) and [9], Lemma 7.2 (the treatment o the term
Ul}0,) that is, for a large constant r0,

2/1/N

where the support of symbol ?(t, x, ’, a’, 7’) o order zero is contained
a small neighbourhood of a point satisfying (7).

We shall introduce a new variable in a neighbourhood of a point
satisfying (7)"

Hereafter we shall consider the first case, since the argument below is
applicable to the second case. Then we have

n--1

j=l

=a(t, x’, a’) + c(t, x’) Re {’,
where the second equality is.the definition of a. Putting as in [9], 7

d(t, x’, ’, a’)=d(t, x’, a’) + d(t, x’, a’) Re {’,
(1)

d(t, x’, ’, a’)=d(t, x’, a’)
(Remark that, in [9], d}=0 and the linear term in Re{’ of d is
cosidered), then we can rewrite K as a polynomial in Re {’ of degree 2"

K(t, x’, ’, a’) Ko+ 2K, Re ’+K (Re 5’),
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where

(12)
Ko(t, x’, a’)--2d Re +d lal2,
Kl(t, x’, a’)=d Re c+ d Re a+ d(la’l + Re (a)),
K2(t, x’, a’)--2d Re c + d(1 + cl2).
A construction of a symmetrizer . In this section we

shall show that (8) holds in a small neighbourhood o a point satisfying
(7), if
(13) d-Ia’l/Re(), d-l-Icl2, d---Rec,
and f is a large positive constant. Here we remark that the choice of
d and d is a natural extension of one in [1]. It ollows from (12) and
(13) that

(14) Ko=21a’lRea+Rec(Rea)-Rec(Ima)+2Im cReaIma,
K1 (1 + c 12) Re a, K (1 + c ]2) Re c.

In order to prove that K0, we need the following lemmas.
Lemma 1 ([8]). A frozen problem (P, B)(t,x,) at a boundary point

(t, x’, O) is L2-well posed if and only if, for every a, either
(I) when Rea=Re/=0, 1+]0"1-2 Ima Imfl>0 or
(II) when (Re a) + (Re fl):/: 0,

A=[ 2 [a1-1 Red [a1-2 Im (a) >0
]al- Im (a) 2 ]al- Re /=

where is considered as a ruction in a and

(15) fl(t, x’, a)=c(t, x’)

Hereafter fl is considered as
Lemma 2.

(K)--KoK= --4-(1 + ]cl) la’l (det A).
Proof.

(K)2--KoK2
=(1+ [c])(Re a)--(l+ Icl) Re c (2 la’l Re a+Re c(Re a)
-Re c(Im a) + 2 Im c Re

=-(1 + Icl)(Re a(2 la’[ Re c-Re a)- (Re c Im a--Im c Re a)).
Using the relations Re a+Re fl=2 la’] Re c and 2(Re c Im a--Im c Rea)
Im (a), we obtain the lemma.
Lemma :. If the case (II) in Lemma 1 is valid, then we have

K0__> 0 and if K0 0, K 0.
Proof. Put

X=2- laY1-2 Im (aft), Y=Ia’I- Re ba
\j =1

Then the case (II) is valid if and only if
Rec>0 and X+Y__<(Rec).

Furthermore we have
(16) ]a’l-2Ko=(Rec)-(2Rec(Y+Rec)+lc]2(y+Rec)2--X2).
In fact, since Re a=Re c + Y, the left hand side of (16). becomes
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2 (Re c + Y)+ Re c(Re c + Y)
+ Im a(Re c Im c+2Y Im c-Rec.a’]-1 Im (

\]--1

Using the relation

(17) X=2-1 la’] -2 Im (a) Re c ]a’]- Im ba’ Y Im c,
\j =1

the above quantity is equal to
2(Re c + Y) + Re c (Re c / Y)+ Im a (Im c (Re c + Y) X).

Again using (17), Im a=(Re c)- (Im c(Re c + Y) +X) and hence (16) is
proved. By a simple computation, we see that a circle X+ Y=(Re c)
and a hyperbola K0=0 have only one common point (X, Y)=(0, --Re c)
at which two curves tangent each other to second order and a hyper-
bol Ko intersects to X-axis at two points (_+ Re c(2 + ]c])/, 0). There-
fore the lemma is proved.

Now we return to the proof of (8). Using (10) and (15), it ollows
from Lemma 1 that Re c>__0. Then we see from (14) that K>0. In
the case (I) it holds that Re a=0 and Re c--0. Hence we see from this
and (14) that K=0. Remark that we do not use the inequality in the
case (I). Ia the case (II) we see rom Lemmas 1, 2, 3 that K>=0. To
prove the second assertion in (8), we remark that Re ’, Re a and Im
are small in a neighbourhood of a point satisfying (7). Hence, in such
a neighbourhood, that d0 follows from (11) and (13). Therefore, it
follows from (4) that the second assertion in (8) holds if f be taken
large.
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