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47. Local Theory of Fuchsian Systems. I

By Masaaki YosHIDA and Kyoichi TAKANO
Kobe University

(Comm. by Kunihiko KODAIRA, M. J. A., April 12, 1975)

1. Introduction. In this paper, we consider a completely in-
tegrable system

(1) dX= (Z dei)x,

t=1 xi
where P;(x), =1, - - -, n is an m X m matrix holomorphic at =0, say
(2) Pi(oc)=k§o Py k.
Here & denotes a multi-index (%,, - - -, k,), k, a nonnegative integer, 0
=0, -.+,0), and x*=ak, ..., x¥, For two multi-indices k& and I, “k>1"

means “k;>1; for all ¢’ and “k>1” means “k>1! and k,>1, for some i”.
We propose to find out the dominant coefficients in {P; ;} which deter-
mine the local behavior of the solution of (1).

A change of variables X=U(x)Y with U(x) invertible holomorphic
at =0, transforms (1) into the system of the form
(3) dY:(ﬁ; -Qi@)—dxt)Y

=1 X
with
4 35 -Q;(—x)—dm: U(x)”(ii —HxLx)—dxi) U@)— U(x)"'dU().
= (3 = (3

First, we determine U(x) in such a way that (8) has a ‘reduced’ form,
of which the definition is given in Section 4. Next, we show that by
a suitable substitution Y=af2...2"Z with L,=diag (&, ---,I™), where
Iz is a nonnegative integer, equation (8), which has a ‘reduced’ form,
can be changed to the equation dZ=(37_, (B;/x;)dx;)Z with constant
matrices B,, - - -, B,.

When preparing this note, we were communicated from T. Kimura,
that R. Gérard was solving a problem analogous to ours.

2. Convergence theorem. We prepare a convergence theorem
which will be used later.

Theorem 1. Let
(5) du:(f de,)u

=1 x'i
be a completely integrable system, where u is a vector and
Fi(x)=1§)Fi,kxk’ T = 12, Y (4

are matrices convergent and holomorphic for |x|<e. Then any formal
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power series solution of (5) converges for |x|<e and represents a holo-
morphic solution of (5).

3. Integrability condition. The integrability condition of a
system (1) is equivalent to
(6)i,7.% kP —FkPy i+ . [Py Py i ]=0

B+ =
for any ¢,7=1,---,nand k=(k,, ---,k,). Here [, ] denotes the usual
bracket of matrices.

4. TReduction to a reduced form. Definition. We say the
equation dX =07, (P(x)/2)dx)X is ‘reduced’ with respect to (k, («, f))
if a;*—af? —k;%0 for some ¢ implies p3%,=0 for all j=1,2, - - -, n, where
k=(ky, -+ -, k), Pd@)=3kso Pos*, Py = (P5%) and Pyy=(az?). Further-
more we say the equation has a ‘reduced’ form if it is reduced with
respect to all (%, («, B)).

First we shall determine the coefficient U, of U(x)=> .5, Usx® such
that the transformed equation has a ‘reduced’ form.

4.1, Formal reduction. We decompose U(x)=> ;-, Upx® as
follows ;

U@)=U, - U,(2)- - - Uy@)- - -
where U, is a nonsingular constant matrix and
Uy@)=UGm™ (@) - Ug™(@)- - - U™ (2) - UF™ ()
xUgm™ V(). - UpP(2) - UPP(2)- - - UV (2)
with
Ugph=I+ >, UPxk,

1kT=N
Here |k|=27,k; and U{? is a constant matrix, of which the (7, )
component is zero except for (r,8)=(a, B): the («, f) component will be
denoted by wui*. We determine U,, U&™(x), US™ (%), - - - UEH(x), - - -
successively.

Since P;, of P,(x) in (2) is mutually commutative by the inte-
grability condition (6); ;.,, we can choose a nonsingular matrix U, such
that
1) {(i) A;=U;'P,; U, i=1, - - -, n is lower triangular,

(i) if af"—afx0 for some ¢, then a3*=0 for all j=1, ..., n,
where A;=(a%*). We note that the transformed equation by U, is
‘reduced’ with respect to (0, («, 8)) for all «,8. Furthermore, using
the notation (7, 9) <(«, p) for 6>p8 or §=4, y<«, we have

Proposition 1 (Induction process). Assume that the completely in-
tegral system dX =3 7., (P{ [ x)da) X, Py(x) =2 40 Pi %", s ‘reduced’
with respect to (k, (y,5)) both for the cases when k([k|<N) and (y,d) is
arbitrary and when k(k|=N), (y,0)<(a,p). Assume further P, ,=A,
= (a2?) satisfies the condition (7). Then we can choose a transformation
=UP (@)Y such that a consequent equation dY =3 %, (Q:(x)/x)dx,)Y,
Qi(X) =2 150 Qi %", is ‘reduced’ with respect to (k,(r,0)) both for the
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cases when k(|k|<N) and (y,0) is arbitrary and when k(K|=N), (7,0)
<(a,p). Furthermore

(8) Que=Pi.  for k(k|<N)i=1,2, . -,n,

(9) ah=P7?,  for k(k|=N), (7, <(a p).

If a;*—aft—k; ;>0 for some i, then the value of uz(k|=N) is deter-
mined by

(10) (@50 — a2} — ks Jug? + P32, =0.

Apply the above proposition to determine U{#(x), by regarding
the equation for X in the proposition as the equation transformed from
@) by U,-UE™ ... U+ (x). Then

Theorem 2. There exists a formal power series > s, Uyx® with
det U, 0, such that the formal substitution X= s, Uxx*)Y changes
the system (1) into the system which has a ‘reduced’ form.

Remark 1. Although > .., U,x* in Theorem 2 is not uniquely
determined, it contains only finite number of undetermined para-
meters.

Remark 2. In Theorem 2, if no two eigenvalues of P;, differ by
an integer for each i, we can choose > ;., U;x* with U,=I such that,
by X=C ks Usx®)Y, (1) is changed to the equation of the form dY
=01 (Pyo/®)dz,)Y. In this case, Uy(k>0) is uniquely determined.

4.2. Analytic reduction. By Theorem 1, we can prove the con-
vergence of U(x)=> s, Uy2* in Theorem 2. Thus

Theorem 3. Given any completely integrable system (1), we have
a convergent series U(x) =y, Urx® with det U, 0 such that the trans-
formation X=U(x)Y takes (1) into

an dy=3; (22 dz)y,
i=1 i

where
(1) Qi) =A;+ 2 ks Qs x® (finite sum), A; being lower triangular,
(ii) the (@, p) component qi*(x) of Q.,(x) is a monomial of x,
g () =q? - aft- - - win,
with k,=a;*—af?, p=1, ..., n. q;*(x) can be nonzero only if a;*—asl’ is
a nonnegative integer k, for all p=1,2, - - -, n.

5. Singular transformation. Congider the ‘reduced’ equation
(11) in Theorem 3. Let L; be a diagonal matrix (I2). A singular trans-
formation Y=uaf1...x*Z changes (11) into dZ=(_%., (B.(x)/x)dx,)Z,
where b3#(x)=qg (@)t~ ... b=t —53ls.  Here, By(x)=(b*(x)), Qi)
=(q;’(x)) and 95 denotes the Kronecker symbol.

We shall show that b2*(x) becomes constant by choosing nonnega-
tive integers Iy suitably. We classify {a;*},,,...,» S0 that a;* and af? be-
long to the same class iff ay*—a?f is an integer. We denote by [a2*] the
class of a*. For every a¢, we define a* as a member of [¢:*] which
has the minimum real part. Then by taking I =a2* — a2, b2#(x) becomes
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a constant b2 by virtue of the properties (i), (ii) in Theorem 3. Thus
we have

Theorem 4. By a change of variables Y=xl...x"Z with L,
=diag (&}, - - - I™), Il nomnegative integer, the ‘reduced’ equation in
Theorem 3 can be transformed to

dZ=(ﬁ B, dxi)Z,
i=1 .’L’t
where B; is a constant matrixz given by
Bi=A¢—-L¢+,§) Qi (finite sum)

and satisfies [B;, B;1=0, i,j=1, --.,n.

Remark 3. L; in Theorem 4 is not uniquely determined, but it is
unique up to integers in the following sense: Let L; and L; be two
diagonal matrices stated in Theorem 4, then ¢ —l*=I[f—1I/* for any a,
B with [a;*]1=[af*].

6. Main Theorems. Combining Theorem 3 and Theorem 4, we
have

Theorem 5. Given any completely integrable system (1) where
P,(x) ts holomorphic at x=0, we have a nonsingular matric U(x) holo-
morphic at x=0 and a diagonal matrie L;, i=1, -..,n of which the
components are nonnegative integers such that the transformation X
=U@)xfr- . -2 Z changes (1) into

dZ=(>ﬁ -Bidxi)Z,
i=1 xi
where By, i=1, - .-, n is a constant matriz setisfying [B,, B;1=0 for all
2,7=1, .-.,n. The matrices B;, L; and the coefficients of the power
series for U(x) can be concretely calculated by algebraic operations.
And the eigenvalues of B;+ L; coincide with those of P;(0).
By the same argument as in the proof of Theorem 5, we can obtain
Theorem 6. Given a completely integrable system

(12) dX=(i %ﬁc)—dxi+ s Pi(x)dxi)X,
1 1

=1 t=v+

where P,(x), i=1, -.-,n is an m Xm matriz holomorphic at =0, we
have a transformation X=U(x)ax. .. .x>Z which changes (12) to dZ
=11 By x)dax)Z where U(x), L, and By, 1=1, - - -, v satisfy the same
condition as in Theorem 5. Furthermore,

U@=U+ 3 Vi)Wt 3 W2k

ky+iteeetkn2
k20
The details will be published elsewhere.

+
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