47. Local Theory of Fuchsian Systems. I

By Masaaki Yoshida and Kyoichi Takano Kobe University

(Comm. by Kunihiko Kodaira, M. J. A., April 12, 1975)

1. Introduction. In this paper, we consider a completely integrable system

$$dX = \left(\sum_{i=1}^{n} \frac{P_i(x)}{x_i} dx_i\right) X,$$

where $P_i(x)$, $i=1, \dots, n$ is an $m \times m$ matrix holomorphic at x=0, say (2) $P_i(x) = \sum_{k>0} P_{i,k} x^k.$

Here k denotes a multi-index (k_1, \dots, k_n) , k_i a nonnegative integer, $0 = (0, \dots, 0)$, and $x^k = x_1^{k_1}, \dots, x_n^{k_n}$. For two multi-indices k and l, " $k \ge l$ " means " $k_i \ge l_i$ for all i" and " $k \ge l$ " means " $k \ge l$ and $k_i \ge l_i$ for some i". We propose to find out the dominant coefficients in $\{P_{i,k}\}$ which determine the local behavior of the solution of (1).

A change of variables X = U(x)Y with U(x) invertible holomorphic at x=0, transforms (1) into the system of the form

$$dY = \left(\sum_{i=1}^{n} \frac{Q_i(x)}{x_i} dx_i\right) Y$$

with

$$(4) \qquad \sum_{i=1}^{n} \frac{Q_{i}(x)}{x_{i}} dx_{i} = U(x)^{-1} \left(\sum_{i=1}^{n} \frac{P_{i}(x)}{x_{i}} dx_{i} \right) U(x) - U(x)^{-1} dU(x).$$

First, we determine U(x) in such a way that (3) has a 'reduced' form, of which the definition is given in Section 4. Next, we show that by a suitable substitution $Y = x_1^{L_1} \cdots x_n^{L_n} Z$ with $L_i = \text{diag } (l_i^1, \cdots, l_i^m)$, where l_i^a is a nonnegative integer, equation (3), which has a 'reduced' form, can be changed to the equation $dZ = (\sum_{i=1}^n (B_i/x_i) dx_i)Z$ with constant matrices B_1, \cdots, B_n .

When preparing this note, we were communicated from T. Kimura, that R. Gérard was solving a problem analogous to ours.

2. Convergence theorem. We prepare a convergence theorem which will be used later.

Theorem 1. Let

$$du = \left(\sum_{i=1}^{n} \frac{F_i(x)}{x_i} dx_i\right) u$$

be a completely integrable system, where u is a vector and

$$F_i(x) = \sum_{k>0} F_{i,k} x^k, \qquad i = 1, 2, \dots, n$$

are matrices convergent and holomorphic for $|x| < \varepsilon$. Then any formal

power series solution of (5) converges for $|x| < \varepsilon$ and represents a holomorphic solution of (5).

3. Integrability condition. The integrability condition of a system (1) is equivalent to

$$(6)_{i,j:k} k_j P_{i,k} - k_i P_{j,k} + \sum_{k'+k''=k} [P_{i,k'}, P_{j,k''}] = 0$$

for any $i, j=1, \dots, n$ and $k=(k_1, \dots, k_n)$. Here [,] denotes the usual bracket of matrices.

4. Reduction to a reduced form. Definition. We say the equation $dX = (\sum_{i=1}^{n} (P_i(x)/x_i)dx_i)X$ is 'reduced' with respect to $(k, (\alpha, \beta))$ if $a_i^{\alpha\alpha} - a_i^{\beta\beta} - k_i \neq 0$ for some i implies $p_{j,k}^{\alpha\beta} = 0$ for all $j = 1, 2, \dots, n$, where $k = (k_1, \dots, k_n)$, $P_i(x) = \sum_{k \geq 0} P_{i,k}x^k$, $P_{i,k} = (P_{i,k}^{\alpha\beta})$ and $P_{i,0} = (a_i^{\alpha\beta})$. Furthermore we say the equation has a 'reduced' form if it is reduced with respect to all $(k, (\alpha, \beta))$.

First we shall determine the coefficient U_k of $U(x) = \sum_{k \geq 0} U_k x^k$ such that the transformed equation has a 'reduced' form.

4.1. Formal reduction. We decompose $U(x) = \sum_{k \ge 0} U_k x^k$ as follows:

$$U(x) = U_0 \cdot U_1(x) \cdot \cdot \cdot U_N(x) \cdot \cdot \cdot$$

where U_0 is a nonsingular constant matrix and

$$U_{N}(x) = U_{N}^{(1,m)}(x) \cdot U_{N}^{(2,m)}(x) \cdot \cdot \cdot U_{N}^{(m,m)}(x) \cdot U_{N}^{(1,m-1)}(x) \times U_{N}^{(2,m-1)}(x) \cdot \cdot \cdot U_{N}^{(1,1)}(x) \cdot U_{N}^{(2,1)}(x) \cdot \cdot \cdot U_{N}^{(m,1)}(x)$$

with

$$U_N^{(\alpha,\beta)} = I + \sum_{|k|=N} U_k^{(\alpha,\beta)} x^k$$
.

Here $|k| = \sum_{i=1}^n k_i$ and $U_k^{(\alpha,\beta)}$ is a constant matrix, of which the (γ,δ) component is zero except for $(\gamma,\delta) = (\alpha,\beta)$: the (α,β) component will be denoted by $u_k^{\alpha\beta}$. We determine $U_0,U_1^{(1,m)}(x),U_1^{(2,m)}(x),\cdots U_N^{(\alpha,\beta)}(x),\cdots$ successively.

Since $P_{i,0}$ of $P_i(x)$ in (2) is mutually commutative by the integrability condition $(6)_{i,j:0}$, we can choose a nonsingular matrix U_0 such that

(7) $\{(i) \ A_i = U_0^{-1}P_{i,0}U_0, i=1, \dots, n \text{ is lower triangular,} \}$

(ii) if $a_i^{\alpha\alpha} - a_i^{\beta\beta} \neq 0$ for some i, then $a_j^{\alpha\beta} = 0$ for all $j = 1, \dots, n$, where $A_i = (a_i^{\alpha\beta})$. We note that the transformed equation by U_0 is 'reduced' with respect to $(0, (\alpha, \beta))$ for all α, β . Furthermore, using the notation $(\gamma, \delta) < (\alpha, \beta)$ for $\delta > \beta$ or $\delta = \beta, \gamma < \alpha$, we have

Proposition 1 (Induction process). Assume that the completely integral system $dX = (\sum_{i=1}^{n} (P_i^{(x)}/x_i) dx_i) X$, $P_i(x) = \sum_{k \geq 0} P_{i,k} x^k$, is 'reduced' with respect to $(k, (\gamma, \delta))$ both for the cases when k(|k| < N) and (γ, δ) is arbitrary and when k(|k| = N), $(\gamma, \delta) < (\alpha, \beta)$. Assume further $P_{i,0} = A_i = (a_i^{\alpha, \beta})$ satisfies the condition (7). Then we can choose a transformation $= U_N^{(\alpha, \beta)}(x) Y$ such that a consequent equation $dY = (\sum_{i=1}^{n} (Q_i(x)/x_i) dx_i) Y$, $Q_i(x) = \sum_{k \geq 0} Q_{i,k} x^k$, is 'reduced' with respect to $(k, (\gamma, \delta))$ both for the

cases when k(|k| < N) and (γ, δ) is arbitrary and when k(|K| = N), $(\gamma, \delta) \le (\alpha, \beta)$. Furthermore

(8)
$$Q_{i,k} = P_{i,k}$$
 for $k(|k| < N)$ $i = 1, 2, \dots, n$,

(9)
$$q_{i,k}^{r\delta} = P_{i,k}^{r\delta} \quad \text{for } k(|k| = N), \ (\gamma, \delta) < (\alpha, \beta).$$

If $a_{i_0}^{\alpha\alpha} - a_{i_0}^{\beta\beta} - k_{i_0} \neq 0$ for some i_0 , then the value of $u_k^{\alpha\beta}(|k| = N)$ is determined by

(10)
$$(a_{i_0}^{\alpha\alpha} - a_{i_0}^{\beta\beta} - k_{i_0}) u_k^{\alpha\beta} + P_{i_0,k}^{\alpha\beta} = 0.$$

Apply the above proposition to determine $U_N^{(\alpha,\beta)}(x)$, by regarding the equation for X in the proposition as the equation transformed from (1) by $U_0 \cdot U_1^{(1,m)} \cdots U_N^{(a-1,\beta)}(x)$. Then

Theorem 2. There exists a formal power series $\sum_{k\geq 0} U_k x^k$ with $\det U_0 \neq 0$, such that the formal substitution $X = (\sum_{k\geq 0} U_k x^k) Y$ changes the system (1) into the system which has a 'reduced' form.

Remark 1. Although $\sum_{k\geq 0} U_k x^k$ in Theorem 2 is not uniquely determined, it contains only finite number of undetermined parameters.

Remark 2. In Theorem 2, if no two eigenvalues of $P_{i,0}$ differ by an integer for each i, we can choose $\sum_{k\geq 0} U_k x^k$ with $U_0=I$ such that, by $X=(\sum_{k\geq 0} U_k x^k)Y$, (1) is changed to the equation of the form $dY=(\sum_{i=1}^n (P_{i,0}/x_i)dx_i)Y$. In this case, $U_k(k>0)$ is uniquely determined.

4.2. Analytic reduction. By Theorem 1, we can prove the convergence of $U(x) = \sum_{k\geq 0} U_k x^k$ in Theorem 2. Thus

Theorem 3. Given any completely integrable system (1), we have a convergent series $U(x) = \sum_{k\geq 0} U_k x^k$ with det $U_0 \neq 0$ such that the transformation X = U(x)Y takes (1) into

(11)
$$dy = \sum_{i=1}^{n} \left(\frac{Q_i(x)}{x_i} dx_i \right) Y,$$

where

- (i) $Q_i(x) = A_i + \sum_{k>0} Q_{i,k} x^k$ (finite sum), A_i being lower triangular,
- (ii) the (α, β) component $q_i^{\alpha\beta}(x)$ of $Q_i(x)$ is a monomial of x,

$$q_i^{\alpha\beta}(x) = q_i^{\alpha\beta} \cdot x_1^{k_1} \cdot \cdot \cdot x_n^{k_n},$$

with $k_{\mu}=a_{\mu}^{\alpha\alpha}-a_{\mu}^{\beta\beta}$, $\mu=1, \dots, n$. $q_{i}^{\alpha\beta}(x)$ can be nonzero only if $a_{\mu}^{\alpha\alpha}-a_{\mu}^{\beta\beta}$ is a nonnegative integer k_{μ} for all $\mu=1,2,\dots,n$.

5. Singular transformation. Consider the 'reduced' equation (11) in Theorem 3. Let L_i be a diagonal matrix (l_i^a) . A singular transformation $Y = x_1^{L_1} \cdots x_n^{L_n} Z$ changes (11) into $dZ = (\sum_{i=1}^n (B_i(x)/x_i) dx_i) Z$, where $b_i^{\alpha\beta}(x) = q_i^{\alpha\beta}(x) x_1^{l_1^{\beta} - l_1^{\alpha}} \cdots x_n^{l_n^{\beta} - l_n^{\alpha}} - \delta_{\beta}^{\alpha} l_i^{\alpha}$. Here, $B_i(x) = (b_i^{\alpha\beta}(x))$, $Q_i(x) = (q_i^{\alpha\beta}(x))$ and δ_{β}^{α} denotes the Kronecker symbol.

We shall show that $b_i^{\alpha\beta}(x)$ becomes constant by choosing nonnegative integers l_i^{α} suitably. We classify $\{a_i^{\alpha\alpha}\}_{\alpha=1,\dots,m}$ so that $a_i^{\alpha\alpha}$ and $a_i^{\beta\beta}$ belong to the same class iff $a_i^{\alpha\alpha}-a_i^{\beta\beta}$ is an integer. We denote by $[a_i^{\alpha\alpha}]$ the class of $a_i^{\alpha\alpha}$. For every $a_i^{\alpha\alpha}$, we define $a_i^{\alpha0\alpha0}$ as a member of $[a_i^{\alpha\alpha}]$ which has the minimum real part. Then by taking $l_i^{\alpha}=a_i^{\alpha\alpha}-a_i^{\alpha0\alpha0}$, $b_i^{\alpha\beta}(x)$ becomes

a constant $b_i^{\alpha\beta}$ by virtue of the properties (i), (ii) in Theorem 3. Thus we have

Theorem 4. By a change of variables $Y = x_1^{L_1} \cdots x_n^{L_n} Z$ with $L_i = \text{diag } (l_i^1, \cdots l_i^m)$, l_i^n nonnegative integer, the 'reduced' equation in Theorem 3 can be transformed to

$$dZ = \left(\sum_{i=1}^{n} \frac{B_i}{x_i} dx_i\right) Z,$$

where B_i is a constant matrix given by

$$B_i = A_i - L_i + \sum_{k>0} Q_{i,k} \qquad (finite sum)$$

and satisfies $[B_i, B_j] = 0$, $i, j = 1, \dots, n$.

Remark 3. L_i in Theorem 4 is not uniquely determined, but it is unique up to integers in the following sense: Let L_i and L'_i be two diagonal matrices stated in Theorem 4, then $l_i^{\alpha} - l_i'^{\alpha} = l_i^{\beta} - l_i'^{\beta}$ for any α , β with $[a_i^{\alpha \alpha}] = [a_i^{\beta \beta}]$.

6. Main Theorems. Combining Theorem 3 and Theorem 4, we have

Theorem 5. Given any completely integrable system (1) where $P_i(x)$ is holomorphic at x=0, we have a nonsingular matrix U(x) holomorphic at x=0 and a diagonal matrix L_i , $i=1, \dots, n$ of which the components are nonnegative integers such that the transformation $X = U(x)x_1^{L_1} \cdots x_n^{L_n}Z$ changes (1) into

$$dZ = \left(\sum_{i=1}^{n} \frac{B_i}{x_i} dx_i\right) Z,$$

where B_i , $i=1, \dots, n$ is a constant matrix satisfying $[B_i, B_j]=0$ for all $i, j=1, \dots, n$. The matrices B_i, L_i and the coefficients of the power series for U(x) can be concretely calculated by algebraic operations. And the eigenvalues of $B_i + L_i$ coincide with those of $P_i(0)$.

By the same argument as in the proof of Theorem 5, we can obtain Theorem 6. Given a completely integrable system

(12)
$$dX = \left(\sum_{i=1}^{\nu} \frac{P_i(x)}{x_i} dx_i + \sum_{i=\nu+1}^{n} P_i(x) dx_i\right) X,$$

where $P_i(x)$, $i=1, \dots, n$ is an $m \times m$ matrix holomorphic at x=0, we have a transformation $X=U(x)x_1^{L_1}\cdots x_{\nu}^{L_{\nu}}Z$ which changes (12) to $dZ=(\sum_{i=1}^{\nu}(B_i/x_i)dx_i)Z$ where U(x), L_i and B_i , $i=1, \dots, \nu$ satisfy the same condition as in Theorem 5. Furthermore,

$$U(x) = (I + \sum_{\substack{k_{\nu+1} + \dots + k_n \ge 1 \\ k \ge 0}} V_k x^k) (W_0 + \sum_{\substack{k_1 + \dots + k_{\nu} \ge 1}} W_{k_1, \dots, k_{\nu}} x_1^{k_1} \cdots x_{\nu}^{k_{\nu}})$$

The details will be published elsewhere.

References

[1] P. Deligne: Equations différentielles à points réguliers singuliers. Lec. Notes in Math., 163. Springer (1970).

- [2] F. R. Gantmacher: The Theory of Matrices, Vol. I. Chelsea Publishing Company, New York (1964).
- [3] R. Gérard: Théorie de Fuchs sur une variété analytique complexe. J. Math. pures et appl., 47, 321-404 (1968).
- [4] W. Wasow: Asymptotic Expansions for Ordinary Differential Equations. Interscience Publishers (1965).