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109. On the Global Existence of Solutions of Differential
Equations on Closed Subsets o a Banach Space

By Nobuyuki KENMOCHI*) and Tadayasu TAKAHASHI**)

(Comm. by K6saku YOSlDA, M. ft. A., Sept. 12, 1975)

1. Introduction. Let D be a subset of a real Banach space X
and A be a continuous function from [0, + c)D into X. In this
paper we consider the initial value problem
(IVP) u’ =A(t, u), u(O)=x,
where x is given in D. By a solution of (IVP) or of (IVP x), we mean
a continuously differentiable function u from [0, + oo) into D such that
u(0)=x and u’(t)---A(t, u(t)) for all t_>_0.

This kind of problem has been treated by many authors; for
example, see Crandall [1], Lovelady-Martin [3], Martin [4], Pavel [5],
[6] and the cited papers in them.

The purpose of this paper is to establish a global existence theorem
for (IVP) under some conditions which are similar to those treated in
[4] but somewhat weaker than them. Our theorem gives some simpli-
fications and improvements of results in [4] and also provides an
answer to a question raised by Martin [4].

2. Existence theorem. Let X be a real Banach space, X* the
dual space of X and denote by (x, f} the natural pairing between x e X
and f e X*. For each x, y e X, define

(y, x}-inf {(y, f}; f e r(x)},
where F is the duality mapping from X into X*, i.e., F is defined by

r(x) {f e X* (x, f} x 2-- f 2}
for each x e X.

Now, let D be a closed subset of X, A a function from [0, + oo) D
into X and consider the following conditions"

(A1) A is continuous from [0, + oo) D into X;
(A2) there is a real-valued continuous function o defined on

[0, + c) such that
(A(t,x)--A(t, y),x--y},<_o(t) Ix--y]

for all (t, x) and (t, y) in [0, + c) D;
(A3) lim inf h-d(x + hA(t, x), D)=0 for each (t, x) in [0, + c) D,

h--*0+

where d(z, D) stands for the distance from z e X to D.
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of (IVP; x).

(,)

for all t >= O.
Remark.

Then our result is the following"
Theorem. Suppose that A satisfies the conditions (A1), (A2) and

(A3). Then for each x in D there exists a unique global solution u(. x)
Furthermore, if x and y are in D, then

u(t x)-- u(t y) <= x--y., exp (0 o(s)ds)-
This theorem gives an improvement of a result in

Martin [4; Theorem 4]. In case D-X, this result is found in
Lovelady-Martin [3] and Pavel [5], [6].

The inequality (.), which ensures the uniqueness of solutions of
(IVP), is obtained by the following lemma.

Lemma 1o Let x,y e D, TO and let u and v be solutions of
(IVP; x) and of (IVP; y) on [0, T], respectively. Then

--v(t) <= ,,x--y,, exp (i o(s)ds)
for all t e [0, T].

Proof. Putting p(t)--Ilu(t)--v(t)l , we have by (A2)
p’(t) 2(u’(t) v’(t), u(t) v(t)}

--2(A(t, u(t))--A(t, v(t)), u(t)--v(t)}
<_2w(t)p(t)

for all t e (0, T). Hence we get the required inequality. Q.E.D.
Therefore to complete the proof of Theorem it suffices to show

only the existence of solutions of (IVP). In the rest of this paper we
shall do it.

3. Approximate solutions and local existence. In this section
we establish the local existence of solutions of (IVP). In the following,
we always assume the conditions (A1), (A2) and (A3).

We first note the following result which is proved in [8] (see also
[7]).

Lemma 2. Let s>__O be fixed. Then for each x in D there exists
a unique continuous function u from [0, + c) into D such that

(i) u(t)=x+.Io A(s, u(r))dr for all t0;

(ii) I]A(s, u(t))ll_-<:exp (w(s)t) ]lA(s, x) for all t>=O.
Using Lemma 2, we can construct approximate solutions of (IVP)

in the following sense.
Proposition 1. Let x e D and {en} be a sequence of positive num-

bers such that lim en=0. Then there are positive numbers Mx and Tx
such that for each n>=l, there exists a partition {0----tKtK... K t?v,
--T} of [0, T] and a continuous function u from [0, T] into D satis-
fying the properties"

( i ) t+l--t<__ for all k, /=0,1,...,N--I;
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(ii) u(0)=x and liu(t)-u(s)ll_M Jt-sl for all t, s e [0, T];
(iii) u is continuously differentiable in each interval (t, t+) and

u’(t)--A(t, u(t)) for t e (t, t+)
(iv) if t e [t, t+], then

Proof. We use a technique similar to Martin [4]. Fix a positive
number To sufficiently large. Then by (A1), there are positive numbers
R and M such that

[IA(t,y)I[M for allte[0, T] and yeDBa(x),
where BR(X)--’{Y e X;Ily--xl]_R}. Put M--M sup {exp (To Io(t)[) t
e [0, To]} and choose a positive number T so that T_min {To, R/M}.

Now, for each n_ 1, let t=0 and v be a continuous function from
[0, + c) into D such that

v(t)=x+[o A(O, v(r))dr for all t__>0.

Inductively define a number t/ in [0, T] and a continuous function
v/ from [0, + c) into D in the following manner" Choose a number
h in [0, ] such that

(1) t+h<=T;
(2) if te [t, t+h], then IIA(t, v(t-t))-A(t, v(t-t))ll<=
(3) h is the largest number in [0,] such that (1)and (2)hold.

Then define t+=t+h and v/ to be a unique continuous function
from [0, + c) into D such that

v/(t) v(h)+ (t/, v/(r))dr for all t>0

Note that by (A1), h0 if tT and also that by Lemma 2, such a
function v/ always exists. We now assert that there is a positive
integer N such that tv._ T and tv.-- T. Assume, for contradiction,
that tT for all k and lira t=c<__T. Then it follows from Lemma

2 that

and

Ilv3(hD--xl[h exp (1(o(0)1 hD I[A(0,
<_Mh
<_R

for all k>_O. These imply that v(h) e DB(x) for all kO and
][v+(h+)--v(h)[]gMh+ for all kO.

Therefore, z= lim v(hO exists in D. Using (A1), take a 0 so that

and ]]A(t, y)-A(c, z)][/2 whenever ]t--c6 and [y--z][26M.
Let k0 be sufficiently large so that c-t6 and ]z--v(h)]M for all
k k0. If kko+ 1, then

v )-z][v(t-tO z[]g[v(t t) v_(h_)]+[
(t--t) exp {[w(t) (t--t)} ]A(t, v_(h_))[+6M
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(t-- Mt) +M
<:2?M

for all t e [t, c] and hence
IIA(t, v(t- t))-A(t, v(t- t))

_llA(t, v(t-t))-A(c, z)ll+llA(c, z)--A(t, v(t-t))ll

for all t e [t, c]. Therefore, by the definition of h, it must be true
that hc--t, i.e., t+=t+hc, which contradicts the fact that
t+c. Thus we have shown that there is a positive integer N such
that t_<T and t=T. Now, define u on [0, T] by

u(t)=v(t--t) if t e ItS, t+], k=0, 1, ...,N--I.
Then by the definitions of t and v, it is easy to see that {t}0. and
u have the required properties. Q.E.D.

We now apply Proposition 1 to prove the following"

Proposition 2. For each x in D, there is a positive number T
such that (IVP x) has a unique solution on [0, T].

Proof. Let x e D and {} be a sequence of positive numbers such
that lira =0. Let M and T be the same positive numbers as in

Proposition 1. Also, let u be the continuous functions obtained in
Proposition 1. For simplicity, put L=sup {](t)[; t e [0, T]} and p(t)
=]u(t)--u(t) for each t e [0, T]. If t e (t, t+) (ty, t+), then we
have by Proposition 1 and (A2),

p’(t) 2(u(t) u(t), u(t) u(t)}t
2(A(t, u,(t))-A(ty, u(t)), u(t)--u(t)}

g2(A(t, u(t))--A(t, u(t)), u(t)--u(t)}
+2(+) ]u(t)-u(t)]
2(t)p(t) +4(MT+ x)(+)
2Lp(t) +4(MT+ x)(+).

Since this differential inequality holds true for all t e [0, T] except a
finite number of points in [0, T], it follows that

u(t)--u(t) ]]g4(MT+ x ]])( +) eL(t-s)d8

or all t e [0, T]. Thus the sequence {u} is uniformly Cauchy on
[0, T]. For each t e [0, T], define u(t)= lira u(t). Then it is clear

that u(0)=x, u(t) e D for all t e [0, T] and u is Lipschitz continuous on
[0, T]. Now, since ]u(t)--A(t, Un(t)) whenever t e (t, t+), we
see that

Also, by (A1), we see that lim A(t,u(t))=A(t,u(t)) uniformly for

t e [0, T]. Therefore, passing to the limit, we obtain that
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u(t)--x+]o A(s, u(s))ds for all t e [0, T].

Thus u is a unique solution of (IVP; x) on [0, T]. Q.E.D.
4. Global existence. Before proceeding to the proof o Theorem,

we prepare the ollowing lemma.
Lemma . Let x e D and let T be a positive number such that

(IVP; x) has a solution on [0, T]. Then there is a positive number R
such that for every y e D Ba(x), (IVP; y) has a solution on [0, T].

Proof. Let x e D and u be a unique solution of (IVP x) on [0, T].
Since the set ((t, u(t)) t e [0, T]} is compact in [0, T] D, (A1) ensures
that there are positive numbers r and M such that

A(t, y)[[ M for all t e [0, T] and all y e D B(u(t)).
Choose a positive number R so that

Rrexp (--I,(s), ds).
Now, let y e D Ba(x) and T be a positive number such that (IVP y)
has a solution v on [0, Tv). Assume that v is non-continuable and
Tv T. Then, by Lemma 1,

u(t)--v(t)I’ x--y exp (: (s)ds)-_ for all te [0, T),
i.e., v(t) e D B(u(t)) for all t e [0, Tv). Hence

A(t, v(t)) M for all t e [0, T),
so that

v(t)-- v(s)I[ M t- s[ for all t, s e [0, T).
This implies that lim v(t) exists in D, which contradicts the fact

tTy
that v is non-continuable. Thus TT and the proof is completed.

Q.E.D.
Proof of Theorem. Let x e D and let C be a connected component

of D containing x. Let T be a positive number such that (IVP x) has
a solution on [0, T]. Now, consider the set

E= (y e C; (IVP y) has a solution on [0, T]).
Then E, because x e E. By Lemma 3, E is relatively open in C.
Also, E is relatively closed in C. In fact, let (y} be any sequence in
E which converges to y e C in the topology of C. Then it is clear that
lim y--Y]I 0. Therefore, it follows from Lemma 1 that the solution

v of (IVP; y) on [0, T] converges to a continuous function v from
[0, T] into D uniformly on [0, T] as n+. Clearly this limit v is
a solution of (IVP; y) on [0, T]. Hence y e E. Thus it must hold that
E=C. Since C is a connected component of D, this fact implies that
(IVP; x) has a solution on [0, kT] for any integer k1 and hence it is
proved that (IVP x) has a solution on [0, + ). Q.E.D.

Remark. The idea for the proof of global existence is also found
in [2].
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Addeed in proof. The authors are most grateful to Professor
R. H. Martin, Jr. for pointing out a gap in the proof of the theorem.
According to his advices, the final part of the proof of the theorem
should be as follows" Let b be any positive number. Then our proof
of Proposition 1 shows that there exists >0 such that (IVP) with
initial time s and initial data x has a solution on [s, s/] for any
s e [0, b]. Taking as T and noting that our argument in the proof
of the theorem remains valid when we take any s>0 instead of 0, we
see that (IVP;x) has a solution on [0, hi.
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