
No. 7] Proc. Japan Acad., 5.1 (1975) 507

106. Divisors on Meromorphie Function Fields

By Mitsuru NAKAI
Department of Mathematics, Nagoya Institute of Technology

(Comm. by KSsaku YOSIDA, M.J.A., Sept. 12, 1975)

Consider the field M(R) of meromorphic functions on an open
Riemann surface R. Let

f(z)= bn(z--a)n

be he Lauren expansion of an f M(R)*----M(R)--(O) at a point a R
where we use the same notation for generic points of R and their local
parameters. The divisor (a) of f M(R)* at a R is defined by

(a) inf {n b :/: 0}.
We first fix an f e M(R)* in 3](a) and consider it as a function of a on
R. Extracting the essence of the point function (.): R--,Z (the
integers) we call a mapping 3(.) RZ a divisor on R if the set {z e R
3(z) :/:0} is isolated in R. Then we have

(I) The Weierstrass.Florack Theorem. For any divisor (.) on
R there exists a unique (up to multiplications by zero free holomorphic
functions) f e M(R)* such that 3(.)--3](.) on R.

We next fix a point a e R in 3](a) and consider it as a functional
of f on M(R)*. As an abstraction of the functional 3.(a):M(R)*-,Z
we say that a mapping 3. :M(R)*Z is a divisor on M(R)* if the
following four conditions are satisfied"

() a(),=Z;

(’) 8. +3
(8) 8/q_>min (,8),

where C is the field of complex numbers and C*= C--{0}. As a counter
part to (I) we have

(II) The Iss’sa Theorem. For any divisor . on M(R)* there
exists a unique point a e R such that . =8.(a) on M(R)*.

The crucial part of the proof of Iss’sa [2] of the above theorem is
to show that
( ) >_0 for any divisor . on M(C)*.
Observe that M(R)={f/g; f, g e A(R), g0} where A(R) is the ring of
holomorphic functions on R. Hence

d=inf {ll; g e M(C)*of :/:0}
is an integer not less than 1 for any fixed f e A(R)* =A(R)-{O} with
3]0 and any fixed divisor . on M(R)*, and there in fact exists a
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go e M(C)*of with d--qo. For any g e M(C)* of with 3_>0, let 3q=md
/n where m and n are integers with 0<_n(d. Then

and therefore q/gn with g/g M(C)*of. This implies that n=0,
i.e. dz divides g. The same is true for qg 0 since q_, -q 0. A
fortiori

Once (,) is established, then we deduce thatis a divisor on M(C)*.
3]--3o]=d]$z_O, i.e.
(**) _0 for any f e A(R)* and any divisor . on M(R)*.
Only this is sufficient to prove that any field isomorphism of M(R) onto
M(R) is also a ring isomorphism of A(R) onto A(R), where R and R
are open Riemann surfaces, since, by (**), any f e M(R)* belongs to
A(R) if and only if ]>_0 for any divisor . on M(R)*. Thus in particu-
lar M(R) and M(R) are field isomorphic if and only if R and R. are
direct or indirect conformally equivalent (Iss’sa [2], cf. also Alling [1]).
The deduction of (II) from (**) is rather elementary except for the use
of (I) (see Iss’sa [2]).

The purpose of this note is, modifying the original proof of Iss’sa,
to give a less algebraic elementary proof to (,) avoiding the explicit
use of the valuation theory such as p-adic integers so that the Iss’sa
theorem can also be included in the class use textbooks of complex
function theory as one of attractive applications of the Weierstrass
theorem (see Heins [3, Chap. VIII]).

Proof of (,). Contrary to the assertion assume that 3(0. We
maintain that

_
for every c e C. In fact, __>min (, )

=3,_/>_min.(_,3)=3_ since 3,0. Let m=--3,+2 and consider
a divisor (.) on C such that (])=m for 2" e Z/ ={] e Z; ]>_0} and (a)
---0 for a e C--Z+. By (I) there exists an f cA(C)* such that 3(.)
=3(.) on C. Fix an arbitrary natural number n and set f

f/I-[ :(z--]). Then
n--1

and therefore
( 1 ) (m-1)3],={(m-1)3]+3}-m3z.
Consider another divisor (.) on C such that (])=m- for ] e (n+Z/)
and (a)=0 for a e C-(n+ Z/). Then once more by (I) there exists a
g e A(C)* such that (.)=3.(.) on C. Since fn/g is in A(C)* and
zero free, the simply connectedness of C assures the existence of the
mth root F e A(C)* of f/g i.e. F’=f/g" Put Gn--F’g and
observe that G’--f. Replacing 3. in (1) by 3,-’mn3a, we obtain
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m’(m 1)ae, {(m- 1)a + a}--
This shows that (m-1)3]/3 is divisible by m or every n e Z/. A
ortiori, (m-- 1)3] -F 3-- 0. On replacing 3 by m-F 2, we finally rrive
at a contradiction

O (m--2) / (m-- 1) Z
since m>2.
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