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1. Periodic systems. Consider a linear periodic system with ¢
regarded as a parameter:

L.1) %:A(w, oy —oo<w,t< + oo,

where p=¢(x, t) is a complex n-column vector and A(x, t) is a complex
n X n matrix function. We assume that A(z, ) is infinitely differenti-
able and periodic in « with period w. Below, we are always in the
category of infinite differentiability. From the well-known Floquet’s
theorem, we see that every fundamental matrix solution X(x ; ¢) of (1.1)
has the form:
1.2) X(z; t)y=P(x, t) exp (x log B(t)/w),
where P(z,t) is a complex nonsingular n X n matrix function which is
periodic in x with period o and B(t) is a complex nonsingular nxn
matrix function which does not depend on x. B(%) is called a mono-
dromy matrix of (1.1) for X(x,t). The eigenvalues p,(t) of a mono-
dromy matrix of (1.1) are called the characteristic multipliers of (1.1).
For any fixed ¢, every monodromy matrix of (1.1) is similar to each
other. Hence, so long as ¢ is fixed, the characteristic multipliers and
their algebraic and geometric multiplicities (which we shall call the
internal structure of a monodromy matrix) do not depend on the par-
ticular fundamental solution used to define the monodromy matrix.
As is well known, in order that all solutions of (1.1) are bounded in
the whole axis —oco <2< 4 oo, it is necessary and sufficient that all
characteristic multipliers of (1.1) have modulii=1 and have simple
elementary divisors (see Hale [1]). As t varies, the internal structure
of B(tf) may change, that is, the qualitative properties of solutions of
(1.1) may change. We now propose the following question: To find
A(x, t) for which the equation (1.1) admits a monodromy matrix which
does not depend on £, that is, the internal structure of every monodromy
matrix of (1.1) does not depend on ¢. For this question we have
Theorem 1. There exists a monodromy matriz of (1.1) which
does not depend on t if and only if there exists a matrixz function I'(x, t)
which is defined on — oo <z, t< + oo, periodic in x with period v and
satisfies
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(1.3) A, )= I'(z, ) + 1A, t), T'(z, ]=0,
ot ox

where the square bracket indicates the commutator.

A fundamental matrix solution of (1.1) such that X(y; t)=I, the
identity matrix, for some fixed ¥ € (— o0, + o) and all t e (— o0, + o)
is called a principal matrix solution at initial point ¥ and denoted by
X(z,y;t). Wedenote by B(t; ¥) the monodromy matrix for X(z, y; t).
We have

Theorem 2. Suppose that B(t;y) is similar to a monodromy
matriz which is independent of t. Then, B(t,y) satisfies

1.4) %B(t; W=II'w;t), B(t; Y.

2. Nonlinear evolution equations. We seek a class of nonlinear
evolution equations having the following property: If the coefficient
matrix A(z,t) varies according to a nonlinear evolution equation of
this class, the equation (1.1) admits a monodromy matrix which does
not depend on ¢.

Theorem 3. Suppose that the coefficient matriz A(x,t) depends
on a complex n X n matrixz function U=U(x, t) in the following fashion:
2.1 Az, )=F(U(x, 1)) + Ay(),
where Ay(x) s o nXn motrix function defined on — oo <x< + co which
is periodic with period o and F depends linearly on U. Suppose that
there exists a nXn matrix function I'(x, t) which is periodic in & with
period o and satisfies

2.2) %r—[A,r1=F<S<U»,

where S(-) is some mnonlinear partial differential (or integral or
integro-differential) operator. Then, if U wvaries according to the
equation

2 =
2.3) Ei—U—S(U)

with periodic boundary condition

2.4) Ux+w,t)=Ux,t) for all # and ¢,

the internal structure of every monodromy matriz of (1.1) does not
depend on t.

Corollary 1. Under the same assumptions of Theorem 3 the char-
acteristic multipliers are invariant integrals of (2.3) with condition
2.4).

There are various examples of nonlinear equations of physical
gignificance having the above remarkable property. We present a
method of deriving them explicitly. For this we now consider the case
when the coefficient matrix A(z, t) depends on a complex parameter A
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in such a way:

(2.5) A, )=U(z, t)+4J

where U is a n X7 matrix function which is periodic in x with period
o and J is a constant matrix. Then, any fundamental matrix solution
X(z;t) of (1.1) is an entire function of 2. Hence, the matrices P(x, t), B(t)
defined by (1.2) are also entire in A. Therefore the matrix I'(x,?)
mentioned in Theorem 1 must be an entire function of 2. In these cases,
the equation (1.3) is

(2.6) 9 y— 9 r4u, r1+aJ, ri=o.
at or
We wish to choose I" such that the derived equation
0
—U=8(U
P )

does not depend on A.

At first suppose that I'(z, t) is a polynomial of degree N in 2, N
being an arbitrary positive integer. Denoting it by I'y(x,t; 2), we
may write

@1 T, £ D=3 IOz, 27,
3=0

where I"® are n X1 matrix functions to be determined so that the left
hand side of (2.7) is independent of 1. Then, we get a recursion
formula for the I"'®,7=0,1,.--,N,:

[J’ F(o)]':O’
2.8) ———a%f'“)+[U, '+ [J, rev]1=0 1=0,1,...,N—1,

and an evolution equation

0 d
2.9 —U=—T"_[U, '™].
@.9) at ox v, I

Adopting the notation ad,-B=[A4, B], we can write the equation (2.9)
formally in the form:

A (i _ adv) T

at ox
_ or d ot
= _[N-1 U R‘N’<U,—— . A ),
ox™ + ox u ox-! u

where [=a(ad;, ad;) ad; (J* being the complex conjugate transpose
and «( - ) being a polynomial of degree two less than that of the mini-
mal polynomial of ad, ad; (see [2]), N(ad;) is the null space of ad;
and R? is a nXn matrix whose elements are polynomiald of the
elements of the matrices U, U /dx, - - - and ¢V U [ox¥ .
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Theorem 4. As U(z, t) varies according to the nonlinear evolution
equation (2.10) with periodic boundary condition
(2.11) Ux+w,t)=U(z,t),
every monodromy matriz of (1.1) with (2.5) has the same internal
structure.

Corollary 2. The eigenvalues of the system
2.12) % — (U, )+ Do
with boundary condition
(2.13) oo, 1) =¢e"¢(0, t),
where 0 is an arbitrary real number, are invariant integrals of the
nonlinear evolution equation (2.10) with (2.5).

Remark 1. The Korteweg-de Vries equation and its gener-
alizations, the Modified Korteweg-de Vries equation, the nonlinear
Schrodinger equation and so on, are the special case of the equation
(2.10). They are naturally derived when one considers the case in
which A(z, )=U(x, t)+ AJ lies in the Lie algebra of unimodular group:
8l(2; O) (see [3]).

Remark 2. For the Korteweg-de Vries equation, the assertion of
Corollary 2 was discovered by Gardner, Kruskal and Miura [4] (see
also Lax [5], Menikoff [6], Tsutsumi [7]). This was a motivation of
the present work.

Next suppose that I'(x,t) is a polynomial of degree M in 17!, M
being an arbitrary positive integer. We denote it by I'y(z, £; 2). Then
we may write

2.14) Iy, t; 1)=2M: O, -1 |
1=0

where '®(x, t) are n X n matrix functions to be determined so that the
left hand side of (2.6) is independent of . We have a recursion
formula

___‘?_fm) +[U, '®1=0,
X

@15 { o ) )
— 2 POLU, FOIH I, FO01=0,  i=1,2, oo, M1,
X

and an evolution equation

2.16) -aat—U +1J, )=,

which is equivalent to the equation

@.17) _a@t_U - ad;f(—&—a; — ad,,)fw—v, mod N(ad,),

where L= Bad,«adyads (J* being the complex conjugate transpose
of J and B( - ) being a polynomial of degree two less than that of the
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minimal polynomial of ad;«ad;) and N(ad,) is the null space of ad,.
Theorem 5. As U(x, t) varies according to the nonlinear evolution

equation (2.16) with periodic boundary condition (2.11), every mono-

dromy matriz of (1.1) with (2.5) has the same internal structure.
Corollary 3. The eigenvalue 2 of the equation

(2.18) %=(U(x, D+ 2y

with boundary condition

(2.19) oo, t)=¢e"¢(0, 1),

where 0 is an arbitrary real number, are invariant integrals of the
nonlinear evolution equation (2.16) with (2.11).

Remark 3. The sine-Gordon equation and its generalizations are
contained in this case. They are derived when one considers the case
in which A(x, t)=U(x, t)+AJ lies in 8[(2; C).

Definition. The equation (2.10) is called the conservative system
of type I and the equation (2.16) the conservative system of type II.

Detailed proofs and further investigations will appear elsewhere.
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