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1. Periodic systems. Consider a linear periodic system with t
regarded as a parameter:

d-A(x,t), --c<x,t< +c,(1.1)
dx

where =(x, t) is a complex n-column vector and A(x, t) is a complex
n n matrix unction. We assume that A(x, t) is infinitely differenti-
able and periodic in x with period . Below, we are always in the
category o infinite differentiability. From the well-known Floquet’s
theorem, we see that every fundamental matrix solution X(x t) of (1.1)
has the form:
(1.2) X(x; t) =P(x, t) exp (x log B(t)/),
where P(x, t) is a complex nonsingular n x n matrix function which is
periodic in x with period and B(t) is a complex nonsingular n X n
matrix function which does not depend on x. B(t) is called a mono-
dromy matrix of (1.1) for X(x, ). The eigenvalues pC(t) of a mono-
dromy matrix of (1.1) are called the characteristic multipliers of (1.1).
For any fixed t, every monodromy matrix of (1.1) is similar to each
other. Hence, so long as t is fixed, the characteristic multipliers and
their algebraic and geometric multiplicities (which we shall call the
internal structure of a monodromy matrix) do not depend on the par-
ticular fundamental solution used to define the monodromy matrix.
As is well known, in order that all solutions of (1.1)are bounded in
the whole axis -c<x< + c, it is necessary and sufficient that all
characteristic multipliers of (1.1) have modulii=l and have simple
elementary divisors (see Hale [1]). As t varies, the internal structure
of B(t) may change, that is, the qualitative properties of solutions of
(1.1) may change. We now propose the following question: To find
A(x, t) for which the equation (1.1) admits a monodromy matrix which
does not depend on t, that is, the internal structure of every monodromy
matrix of (1.1) does not depend on t. For this question we have

Theorem 1. There exists a monodromy matrix of (1.1) which
does not depend on t if and only if there exists a matrix function F(x, t)
which is defined on oo x, t / oo, periodic in x with period o and
satisfies
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(1.3) .A(x, t)-- -F(x, t) + [A(x, t), F(x, t)] =0,
at ax

where the square bracket indicates the commutator.
A fundamental matrix solution of (1.1) such that X(y; t)=I, the

identity matrix, for some fixed y e (--, +) and all t e (-- c, + c)
is called a principal matrix solution at initial point y and denoted by
X(x, y; t). We denote by B(t y) the monodromy matrix for X(x, y; t).
We have

Theorem 2. Suppose that B(t; y) is similar to a monodromy
matrix which is independent of t. Then, B(t, y) satisfies

.B(t; y)--[F(y; t), B(t; y)].(1.4)
t

2. Nonlinear evolution equations. We seek a class of nonlinear
evolution equations having the following property" If the coefficient
matrix A(x, t) varies according to a nonlinear evolution equation of
this class, the equation (1.1) admits a monodromy matrix which does
not depend on t.

Theorem :. Suppose that the coefficient matrix A(x, t) depends
on a complex n n matrix function U U(x, t) in the following fashion:
(2.1) A(x, t)=F(U(x, t))/ Ao(x),
where Ao(x) is a n n matrix function defined on -c x + c which
is periodic with period oo and F depends linearly on U. Suppose that
there exists a n n matrix function F(x, t) which is periodic in x with
period (o and satisfies

F-- [A, F] F(S(U)),(2.2) x
where S(. )is some nonlinear partial differential (or integral or
integro-differential) operator. Then, if U varies according to the
equation

u=s(u)(2.3)
t

with periodic boundary condition
(2.4) U(x + o, t) U(x, t) or all x and t,
the internal structure of every monodromy matrix o (1.1) does not
depend on t.

Corollary 1. Under the same assumptions o/Theorem 3 the char-
acteristic multipliers are invariant integrals of (2.3) with condition
(2.4).

There are various examples of nonlinear equations of physical
significance having the above remarkable property. We present a
method of deriving them explicitly. For this we now consider the case
when the coefficient matrix A(x, t) depends on a complex parameter 2
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(2.10)

in such a way"

(2.5) A(x, t)= U(x, t) +J
where U is a n n matrix function which is periodic in x with period
o and J is a constant matrix. Then, any fundamental matrix solution
X(x t) of (1.1) is an entire function of . Hence, the matrices P(x, t), B(t)
defined by (1.2) are also entire in . Therefore the matrix F(x, t)
mentioned in Theorem 1 must be an entire function of . In these cases,
the equation (1.3) is

u___+[u,]+[j,1]=o.(2.6)
t x

We wish to choose F such that the derived equation

u=s(u)
t

does not depend on .
At first suppose that F(x, t) is a polynomial of degree N in , N

being an arbitrary positive integer. Denoting it by F(x, t; ,), we
may write

(2.7) F(x, t; )= F()(x, t),-,
where/’") are n n matrix functions to be determined so that the left
hand side of (2.7) is independent of 2. Then, we get a recursion
formula for the F(), i=0, 1, ., N,"

[J, F()] =0,

(2.8) --3---F()+[U,F()]+[J,F(+)]=O i=0, 1, ,N--l,x
and an evolution equation

U=__F(>_[U,(2.9)
t x

Adopting the notation ad.B=[A, B], we can write the equation (2.9)
formally in the form"

3 U (x adv)F()
_L adF(-),(--x- adv)(--- /

moaN(adz)

.U+R) U,--U,..’, OxN_
U,

where .L’=a(adz, ad)adz, (J* being the complex conjugate transpose
and a( ) being a polynomial of degree two less than that of the mini-
mal polynomial of adz, adz (see [2]), N(adz) is the null space o adz
and R() is a nn matrix whose elements are polynomiald of the
elements o the matrices U, U/x,... and -U/3x-.
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Theorem 4. As U(x, t) varies according to the nonlinear evolution
equation (2.10) with periodic boundary condition
(2.11) U(x/o, t)=U(x, t),
every monodromy matrix of (1.1) with (2.5) has the same internal
structure.

Corollary 2. The eigenvalues of the system

(2.12) d---(U(x, t) +J)
dx

with boundary condition
(2.13) ((o, t) e(0, t),
where t is an arbitrary real number, are invariant integrals of the
nonlinear evolution equation (2.10) with (2.5).

Remark 1. The Korteweg-de Vries equation and its gener-
alizations, the Modified Korteweg-de Vries equation, the nonlinear
SchrSdinger equation and so on, are the special case of the equation
(2.10). They are naturally derived when one considers the case in
which A(x, t)= U(x, t)/ 2J lies in the Lie algebra of unimodular group"

1:(2 C) (see [3]).
Remark 2. For the Korteweg-de Vries equation, the assertion of

Corollary 2 was discovered by Gardner, Kruskal and Miura [4] (see
also Lax [5], Menikoff [6], Tsutsumi [7]). This Was a motivation of
the present work.

Next suppose that F(x, t) is a polynomial of degree M in -I, M
being an arbitrary positive integer. We denote it by/n(x, t 2). Then
we may write

(2.14) /(x, t 2):/()(x, t)]t--I
t=0

where/()(x, t) are n n matrix functions to be determined so that the
left hand side of (2.6) is independent of ,. We have a recursion
formul

Ox
(2.15) ---/ + [U,/] + [J,//] =0, i= 1, 2, ..., M-- 1,

3x
and an evolution equation

a U+ [J,/(")] =0,(2.16)
t

which is equivalent to the equation
a U ad_( --ad)_P-), mod N(ad),(2.17)
at

where .=fl(adz, adz)adz, (J* being the complex conjugate transpose
of J and ( ) being a polynomial of degree two less than that of the
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minimal polynomial of ad, ad) and N(ad) is the null space of ad.
Theorem 5. As U(x, t) varies according to the nonlinear evolution

equation (2.16) with periodic boundary condition (2.11), every mono-
dromy matrix of (1.1) with (2.5) has the same internal structure.

Corollary 3. The eigenvalue of the equation

d -(U(x, t) /J)(2.18)
dx

with boundary condition
(2.19) (o, t) e(0, t),
where is an arbitrary real number, are invariant integrals of the
nonlinear evolution equation (2.16) with (2.11).

Remark 3. The sine-Gordon equation and its generalizations are
contained in this case. They are derived when one considers the case
in which A(x, t)= U(x, t)+J lies in (2; C).

Definition. The equation (2.10) is called the conservative system
of type I and the equation (2.16) the conservative system of type II.

Detailed proofs and further investigations will appear elsewhere.
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