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173. Weight Functions of the Class (A..)
and Quasi-conformal Mappings

By Akihito UCHIYAMA
Department of Mathematics, Tokyo Metropolitan University

(Comm. by Kdsaku YO0sIpA, M. J. A., Nov. 12, 1975)

§ 1. Introduction. In the following we use G as an open subset
of R*, @ (or P) as a cube with sides parallel to coordinates axis, E as
a measurable set and y(X) as the characteristic function of E. When f

is a measurable function defined on R”, sup {(I Q I"‘J‘ WAIE dy>1/p| Qs x}
@

will be denoted by M,(f)(x). If ¢: G,—G, is totally differentiable at ,
the Jacobian matrix of ¢ at # will be denoted by @(x) and |det (x)| by
J,(®). For ACL (absolutely continuous on lines) and BMO (bounded
mean oscillation) see Reimann [4].

In Reimann [4] he proved the following theorem.

Theorem A. Let ¢ be a homeomorphism of R* onto itself, ACL
and totally differentiable a.e. and assume that |o(-)| and |¢7'(-)| are
absolutely continuous set functions in R*. Then ¢ is quasiconformal
iff there exists C>0 such that ||fo ™|« <C||flx for any BMO function
f, where || - ||, means the BMO norm.

Using his idea, some other characterizations of quasiconformal
mappings are possible. Theorem 1 and Corollary 1 are characteriza-
tions by Hardy-Littlewoods’ maximal functions and Theorem 2 is a
characterization by some kind of measures.

§ 2. The Hardy.Littlewoods’ maximal functions and quasicon-
formal mappings

Theorem 1. Let ¢ be a homeomorphism of G, onto G,, ACL and
totally differentiable a.e. Then the followings are equivalent.

(I) ¢1is o quasiconformal mapping.

(A1) There exist C>0 and co >p>1 satisfying the following con-
ditions:

For vx ¢ G, there exists r(x)>0 such that

sup {|QI"* [ @yl diam Q<r(@), Q5 o)

<Csup {(1Q1 | 7o @rdy)”1Q5 pla), @G,
sup {IQI"1 jQ S oo i (ydy|diam Q<7(x), Q 3 so(x)}

<csup {(ler [ raray)”1@s 2 @6

(1)

(2)
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for any nonnegative measuradble function f and
Wlly—z|<r@}cG,  {Ylly—e@®|<r@)}Cq.,.

Corollary 1. Let ¢ be a homeomorphism of R™ onto itself, ACL
and totally differentiable a.e. Then ¢ is quasiconformal iff there exist
1<p9,<p,<c0, C;>0, C,>0 such that

M ()@ <CMy,(f o ™) p@) < CMp, () (@)

for any measuradble function f defined on R™ and for any x € R".

Proof of Theorem 1. (I)—(II). From Gehring [2] Lemmas 3 and
4, there exist 20 and C>0 such that

(1 [ 7,y dayreso<ciar | T @

for any cube Q with diam ¢(Q)<dist (¢(Q), 3G,). Then from Coifman
and Fefferman [1] Theorem 5, there exist C>0 and co >p>1 such that

Q! L J,(@)de< c(| QI LZ J,,(x)-p'/pdx)"”’" (3)

for any cube Q with diam ¢(Q)<dist (p(Q), 3G,), where 1/p+1/p’=1.
Therefore,

er | f(y)dy<IQ|“(L J,,(w-p'fmy)””'(jQ F@?I,Wady)
< C(jQ Jy,(y)dy)"”p(jQ r@r,way)”

=c(lv@1 - (Fop~rdy)

But if diam ¢(Q)/dist (p(Q), 0G,) is sufficiently small, there exists a cube
P such that o(Q)CPCG, and |P|<C|¢(Q)], where C depends only on ¢
[see Gehring [2] Lemma 4]. This proves (1). Since ¢! is also quasi-
conformal [see Mostow [38] Theorem 9.3], (2) can be proved similarly.

(ID—{@). The proof of Theorem 3 in Reimann [4] can be used as
it stands, but in our case we can prove by means of a simpler function.
From (II), |¢(-)| and |¢~'(-)| are absolutely continuous set functions, so
by the same argument as Reimann [4] Theorem 3, it surfaces to prove
that there exists C >0 satisfying

sup {|O(@)¢["|1&]=1, & € R"}<CJ (%)
for any «,e R® where ¢ is differentiable and J,(x)#0. For this end
we have only to prove 2,<C’ where C’ is independent of x, and
1 0

2

@(x0)=2‘0 . g, P»aeo(/n), 1<22<"'<2n'

1/p

0 An
Let g(x) be x([1,2]x[-1/2,1/2]X---x[—1/2,1/2])(2) and f.(x) be
927 p () —¢(%))). Then replacing f by f,, the right hand side
of (2) tends to
CM,(x([1, 21 X [—27'2:%, 273271 X « + « X [—2772;.%, 2712, 1))(0)



Suppl.] Quasi-conformal Mappings 813

as ¢ converges to 0. On the other hand, the left hand side of (2) tends
to M,9(0). So, C<a;¥?, i.e. 2,<C.
Proof of Corollary 1. When G,=G,=R", we can take r(x)=co.
§ 3. (A.)-measures and quasiconformal mappings. Coifman and
Fefferman [1] proved the following theorem.
Theorem B. When p is a measure defined on the Borel sets of
R®, the followings are equivalent.
B~—=1) There exist 6,>0 and C,>0 such that
UE) (@< C(E|/|QD™ for vECvQ.
(B—1II) There exist 6,>0 and C,>0 such that
IB|/1QI<CAuE) [ (@) for VECYQ.
(B—III) dp=w(x)dx and there exist C>0 and a>0 such that

Q- j@ w@ds<0(|Q" jQ w(x)-adx)'”“ for vQ.

Definition. The class of w (or p) which satisfies B—1I, II, III is
called (4.).

For the relation between (4.) and BMO, Reimann [4] proved the
following result.

Theorem C. We define ~ and = as follows.

f~giff 3a>0,3beR s.t. f=a9+b
u=~v iff 3a,b>0 s.t. u=av®.
Then w—log w defines a one-to-one mapping from A,/ ~ onto BMO/ ~.

Using Theorem C, we can prove the following theorem.

Theorem 2. Under the same condition as in Corollary 1 ¢ is
quasiconformal iff

o)), lo(-N e (A.)  for Yue (4.

Proof (—). Let @ be any cube in R”, then there exists a cube
P2 ¢(Q) suchthat |P|< C|e(Q)], where C is independent of @ [see Gehring
[2] Lemma 4]. From (3), [¢(:)| € (A.). Then for Yue (4.),VECQ

1(o(E) [ 1(p(Q)) < Culp(E)) | u(P)
<C(e(®E)|/| P < C(o(E)|/|p(Q) )™
<C(E|/|1QD".
So, ue(-)) e(A.). Since ¢! is quasiconformal, u(p~'(-)) also belongs
to (4.).

(«). From the fact dx € (A.) and the hypothesis, |¢(-)| and |¢7*(-)|
belong to (A.), i.e. J (%), J, () e(A.). Let f be any element of
BMO(R"™). Then from Theorem C there exists ¢>0 such that ev®
€(A.). Then from the hypothesis the set function E»—»I e’y

¢

~1(E)
belongs to (4.), i.e. e/ J, ,(x) e(A.). From Theorem C efo¢p™!
+log J,-.€ BMO so fop~'e BMO. Then by the closed graph theorem
(«) part is proved.
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