802 Proc. Japan Acad., 51 (1975) [Vol. 51,

171. A Characterization of P-Spaces
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Institute of Mathematics, Technical University, Wroclaw, Poland

(Comm. by Kenjiro SHODA, M. J. A., Oct. 18, 1975)

P-gpaces were introduced by K. Morita [2] (cf. [3]) for an intrinsic
characterization of those normal (resp. paracompact) spaces X whose
product space X xY is normal (resp. paracompact) for each metric
space Y. That was a solution of a problem stated by H. Tamano [5].

In the present paper a characterization of P-spaces is given
(Theorem 1). Further it is pointed out that this characterization is
related to a topological game (Theorem 4). Finally, to each topological
space X a metric space P(X) is associated such that e.g. the paracom-
pactness of X X P(X) implies the paracompactness of X XY for each
metric space Y (Theorem 8).

Definition ([3], p. 369). Let m be a cardinal number >1. A
topological space X is said to be a P(m)-space if for a set I of cardinality
m and for any family

{G(ii, s "in): (il’ . ','in) GI"',’I’LGN}
of open subsets of X such that G(@,, - -+, )Gy, - -, @, in,,) for each
@y ++ s Tny Tny) € I**Y, me N, there exists a family

{F(il, . "in): (7:1’ . "in)eIn,ueN}
of closed subsets of X satisfying the two conditions below:

@) F@,---,i,)CGGy, -+ -,1,) for each (¢, ---,%,) € I*, ne N, and

(b) CJIF(il, <o, 4, )=X for each (i, %, - --) €IV such that Ol Gy,
e ty)=X.

X is said to be a P-space if X is P(in)-space for each cardinal m>1.

Let ¥ (resp. ®) denotes the family of all closed (resp. open) subsets
of a topological space X.

Theorem 1. X is a P-space iff there exists a function
F:l)&n—g
n=1

such that
1.1. if Gy -+, G e®, neN, then F(Gy, -+, Gn)C ,H G,, and

1.2, if (Gy Gy ) e @Y and ) Go=X, then Dl F(G,, -, G)=X.
n=1 n=
Proof. (=) Let X be a P-space. Weset = and GG, ---,G,)
= C) G, foreach (G, - -+, G,) € ®*, ne N. Itisclearthat GG, ---,G,)

k=1
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cG(@Gy, -+, Gy, Gy, for each (Gy, ---, G,y Gr) € G**Y, neN. Thus
there exists a family

{F(GI’ ° "Gn): (Gl, o -,Gn)e@”,neN}
of closed subsets of X so that the conditions (a) and (b) are satisfied.

Since G(Gy, + - -, G)=J Gy, it follows that the function F': | ) G"—%
k=1

n=1

has the properties 1.1 and 1.2.
(&) Let F be a function from D ®&" into ¥ such that 1.1 and 1.2
n=1

are satisfied. Let I be any nonvoid index set and let
{G@,, -8 @y -5 ) €I*, me N}
be a family of open sets in X such that G(@,, - - -,%,) CG@,, - - -, 90y Tny1)
for each (¢}, - -+, %y, 0 ) €I, ne N. We set
F@y, -5 t)=F(GG), G@, 1), - -+, Gy, -+ +, 1))
for each (¢}, -+ +,4,) €I", ne N. Then we have F(i,, - - -, 4,)C Gy, - - -, %)

foreach (i, + - +,4,) € I", n e N. Let (i, 4, ---) e I¥andlet | J GG, - - -, )
n=1

=X. Then Q Fly - in)=UJ F(GGY, G i), - - -, Gy, - - -5 0n)) =X.
n= n=1
Hence X is a P-space.
Theorem 2 which follows is just another variant of Theorem 1.
Theorem 2. X is a P-space iff there exists a function F defined

on the family of all finite sequences G,CG,C .- CG, of open sets in X
such that F(G,, ---,G,) e, F(G,, - +,G)CG, andif (G, Gy, -++) e &Y,

G.CG,,, for each ne N and CJ G,=X, then CJ F@G,---,G@)=X.
n=1 n=1

The function F for some of P-spaces can be easily defined and the
verifications of conditions 1.1 and 1.2 are not difficult. Here are some
examples.

Example 1. Let X be a countably compact space. Then we set
F@G,, ---,G)=Xif C} G.=X,and we set F(G,, - -+, G,) =0 if LnJ G.#X.
k=1 k=1

Example 2. Let X be a o-compact space, i.e., let X= O C, where

n=1

C,, C,, - - - are compact subsets of X. We set F(G,, ---,G,)=UJ {Ck: k
<n, C,C Lnj Gm}.

m=l
Example 3. Let X be a perfectly normal space. Then for each
Ge® there exists a sequence (Fy(@),F,(G),---)eF" such that

G=F. Q). Weset F(G,--+,G)=J U Fu(Gn).
1 1

n=1 k=1 m=

Example 4. Let (X, d) be a metric space. Weset F(G,, ---,G,)=X
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if CJ Gy,=X and we set F(G,, -- -,Gn)={xeX: d(z,y)=1/n for each
k=1
yeX—J Gk} it ) Gu£X.
k=1 k=1
Theorem 3. Let m>YR,. Then X is a P(m)-space iff for each

family AC® with card A<m there exists a function F: 0 Ar—F such
n=1
that

31. F(A,---,A)c A, for each (4, ---,A,)eU", neN
k=1
and

3.2. UFA,---,A)=X foreach (A, A, ---) e A with| JA,=X.
n=1 n=1

The proof of Theorem 3 is similar to the proof of Theorem 1 and
thus it is omitted.

Now we shall describe a game associated with P-spaces. Let X
be a topological space. Then I'(X) denotes the following infinite posi-
tional game with perfect information. There are two players: the
first and the second one. The players choose alternatively consecutive
terms of a sequence of subsets of X so that each player knows X and
first k© elements of that sequence when he is choosing the (k4 1)-st
element.

A sequence (G,, F'}, G, F, - - -) of subsets of X is said to be a play
of I'(X) if for each n ¢ N we have

1° G,e® and G, is chosen by the first player, and

2° F,e@, F,C Ln) G, and F',, is choosen by the second player.
k=1
A play (G, F,, G, F,, - --) is a win of the first player if |) G,=X
n=1
and C) F,+X. Aplay (G,F,G,F,, ---)isa win of the second player

n=1

if U)Gu#X or if )G,=_)F,=X. Clearly, each play is a win of
n=1

n=1 n=1

exactly one of the players.
The first player obliges the second one to choose F', bounded by

CJ G;. The second player wants to choose sufficiently big sets F,,

k=1

because if O F,=X, then he wins. On the other hand the first player
n=1

tries to extend the set Ln) G to obtain a cover of X, because if C) G.+X,
k=1

n=1

then he loses the play.
A strategy of the first player is a function s: {#} U CJ Fr—G. A
n=1

strategy of the second player is a function ¢: 0 & *—F such that (G,

n=1
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---,Gn)CLnJG,cfor each (Gl,---,Gn)e@in, neN,
x=1

For each pair (s, t) of strategies there exists a unique play (G,, F,,
G, F;, -+ 2) of I'(X) defined as follows: G,=s(@), F,=tG,), G,=s(F"),
F,=1(G,, G,), and so on.

A strategy s (resp. t) is said to be winning if the first player (resp.
the second player) using s (resp. t) wins every play of I'(X).

According to Theorem 1 and the definition of strategies we have
the following game-theoretical characterization of P-spaces.

Theorem 4. X is a P-space iff the second player has a winning
strategy in I'(X).

Let I'(X, %) denote the following modification of I'(X). The moves
of the first player are restricted to the choice of sets belonging to a
given family AC®.

Theorem 5. Let m>YR,. Then X is a P(m)-space iff for each
family ACS with card A< m the second player has a winning strategy
i I'X, %A).

Theorem 5 is an easy consequence of Theorem 3.

Let us note that the paper [6] contains a sufficient condition for a
paracompact space X to get the paracompactness of the product space
X XY with any paracompact space Y and the condition is nothing else
as the existence of a winning strategy in some topological game on X.

To each space X we assign a metric space P(X) defined as follows.

P(X)={(G1, Gy ) e GV QGn:X}.

The canonical base of P(X) consists of all sets B(U,, - -, U,)={(G,, G,,
)ePX): G=U,.--,G,=U,} where (U, ---,U,)e®",neN. Itis
well known that the canonical base is o-discrete, the sets B(U,, - -+, U,)

are open and closed and natural distance in P(X) is defined by setting
au, U, ), (V,V, .- )=0if U,=V, for each ne N and d((U,, U,,
), (V, V- N=1/nif U,#V, for some ke Nandn=min{ke N: U,
#Vi}

In the proof of Theorem 6 we shall need the following

Lemma. Let S be a normal, countably paracompact space. Then
for each a-locally finite open cover A of S there exists a locally finite
open cover © of S such that {H: H ¢ §} refines U.

Proof is obvious from [3, Lemma 1.5].

Theorem 6. If XX P(X) is normal and countadbly paracompact,
then X is a P-space.

Proof. Let X be a space such that the product space X x P(X) is
normal and countably paracompact. We shall point out that X admits
a function F' described by Theorem 1. For (G, ---,G,) e &, neN,
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we set A(G,, -+, G,,):(Lnj G,c> xXB(G,, +++,G,). Since
k=1

B={B(G,, ---,G,): (Gy, -++,G,) e ", ne N}
is o-discrete in P(X), it follows that the family

9*['-:{14((;1’ te "Gn): (Gl’ o ‘,Gn) € @naneN}
is g-discrete in X X P(X). It is easily seen that 2 is an open cover of
XxP(X). By Lemma there exists a locally finite open cover & of
XX P(X) such that {H: H ¢ §} refines A. For each (G, ---,G,) e &,
neN and H ¢  we set

DGy -+, G, H)=U{Ge®: GXBG,, ---,G,)CH]}.
Then we have D(G,, -+, G,, H)XB(G,, ---,G,)CH and Hc U{D(G,,
s Gy, HYXB(Gy,y -+, Gy): (Gy, - -+, Gy) € 8", ne N}, Hence it follows
that
{D(Gv . '7Gn,H)XB(G1’ ° ';Gn): (Gu . "Gn)G@”, neN,He@}

is a refinement of {H: H ¢ §} and it covers X X P(X). Letne N and
@G, ---,G,) €@, Then the family {D(G,, - - -, G, H): H € §} is locally
finite in X, because D(G,, - - -, G,, H) XB(Gy, - -+, G, )CH and {H: H ¢ &}
is locally finite in XX P(X). Let He$ and set EG, - -,G,, H)

.y {D(Gl, e, Guy H): m<t, BGy, -+, Gu)=B(Gy, - - -, Gx) and D(G,,

-o-,Gn,H)CLn)Gk}. It is easy to verify that the family {E(G,,
k=1

-+, Guy H): He §} is locally finite in X. For each neN and (G,
-G e®" we set F(Gy, --+,G)=U{EGG,,---,G,, H): He $}. The
set F(G,, - -+, G,) is closed in X, because it is the union of a locally finite
family of closed sets. It follows from the definition of F(G,, - - -, G,)

that F(G,, - -+, G,)C Ln) G,. Thus it remains to prove the condition 1.2
k=1

of Theorem 1. Let (G, G,, - -+) € P(X). We claim that 01 F@G,- - --,G,)

=X. Let xeX. Then there exists H ¢ § such that (z,(G,, G,, - -+))
¢ H. Since 9 refines ¥, there exists A(U,,---U,) e ¥ such that H

CAU, ---,U,). Since A(Ul,u.,Un)=(L") Uk)xB(Ul,---,U,,) and
k=1

G, G, .--)eBWU,---,U,), we have U,=G,,---,U,=G,. Hence H
CcA@G, ---,G,). Since

HCcU{D(V, -,V )XBV,, -+, V,)): (Vy, -+, V,) e ™, me N},
it follows that there exists me N and (V- --,V,) e ®™ such that
(.’!3, (Gl’ Gz, . ‘)) € D(Vl’ ] Vm’ H) XB(VU ] Vm)- Now again (Gl’ Gz:
..)eB(V,,.--V,)implies V,=G,, - - -, V,=G,, and therefore x ¢ D(G,,
«++y, Gn, H). Moreover B(G, ---,Gn)CBG, --+, G,) and D(G,

o, G, HC Ln) G,. We distinguish two cases. Case 1: m<n. Then
k=1
B(G,, --+,G)=B(G,, ---,G,) and hence e DG, - +,Gn, HYCE(G,,
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o, G, H)CF (G, - -+, G,). Case 2: m>n. Then L")G,CCLMJG,, and
k=1

k=1

hence x ¢ D(G,, - -+, G, HYCE(G,, -+, G, HH CF(Gy, - -+, Gy). There-
fore | F(Gy, - -+, G)=X.
n=1

Let us note that the proof of Theorem 6 is an adaptation of a con-
struction used by K. Morita [3], Lemma 4.5.

Theorem 7. X i8 a normal P-space iff the product space X X P(X)
X C is normal, where C denotes the Cantor Discontinuum.

Theorem 8. X is a paracompact P-space iff the space X X P(X)
18 paracompact.

The implications (=) of both preceding theorems were proved by
K. Morita [3]. Since the normality of X X P(X)Xx C implies the nor-
mality and the countable paracompactness of X X P(X) (cf. [4], Theorem
1.3), the implications (&) of the theorems follow from Theorem 6.
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