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169. Approximation Theorem on Stochastic Stability

By Kunio NISHIOKA
Tokyo Metropolitan University

(Comm. by Késaku YosIpa, M. J. A., Oct. 18, 1975)

§ 1. This paper treats the approximation theorem on the stability
theory of dynamical systems given by stochastic differential equations.
Consider a dynamical system in R":

(1) di,(t) =§ ou(@(@)AB(®) +b(x(@)dt  (G=1,.--,n)

(in this paper, we always assume that coefficients of (1) are Lipschitz
continuous). If we assume that for m=>1
(2) {O'uc(w) =~5zk(2) [|™ 4 o(|2|™)
by(@)=b,() |w™ ' +o(z[™")  |x|-0,
where 2=2/|z|, then the first approximation of (1) is defined by
(3) dwz(t)=§ 36A®) |2(@®) ™ dB(8) + b, (A®)) | () P dit.

Following to Khas’minskii [2], we call x(f) asymptotic stable in
probability if lim P, {lim |2(f)|=0}=1, asymptotic unstable in prob-
|z |-0 -0

ability if P, {lim |z(f)|=o0}=1 for all x (#{0}), divergent in probability
=00
if P, {sup |x(®)|>¢}=1 for all x (+{0}) and small ¢>0.
t>0

The main theorems are:

Theorem 1. If the solution of (3) is asymptotic stable in prob-
ability, then that of (1) is so.

Theorem 2. If the solution of (3) is asymptotic unstable in prob-
ability, then that of (1) is divergent in probability.

When m=1, the results have been already proved by Khas’minskii [2]
and Pinsky [4].

In §2 we sketch proofs of Theorems 1 and 2. In §3 they are
applied to a limit behaviour of a stochastic process on a two dimensional
compact manifold, which is useful for studying the stability of three
dimensional linear systems (see [1]).
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§ 2. Remark 1. In this section it will be proved that the stability
of (8) is equivalent to that of )

(4) dxi(t)=; 6::(A) |w(t]) dBy(t) + b, (A(D)) |x(D)| dt.

Thus, a little modification of Khas’minskii’s sharp stability criterion
formulated in [1] is applicable to (3).
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Remark 2. If 6,,(2)=0 and b,(1)=0 in (3), then the solution of (3)
is not asymptotic stable in probability nor asymptotic unstable.
Outline of proofs of Theorems 1 and 2. Define T(¥)

=j:|x(u)12m‘2du. Since P {0<|2(t)|<oo, t=0}=1 (see [2]), T-!(f) is

well defined. By the time substitution T-(¢), (1) and (8) are respec-
tively transformed into
iy s 0u@(T @) 45 by(x(T~(2))
dx,(T (t))—zk:WdBk(t)-i-Wdt,
(5) dxi(T"(t))=Zk] Fu QT @) | 2(T~1(®))| dB(8)
N +b0.QT @) | (T~ @) dt,

where B(t) are suitable Brownian motions. Now the theorems follow
from a slight modification of Theorems 7.1.1 and 7.2.3 in [2].

Especially, if coefficients of (1) are C-class in some neighbourhood
of {0}, and if ¢,,(0)=0 and ,(0)=0, then they are expanded as

O'M(x)=%: aijklxlcl'l'k;t:g O g1ka@n Lyt o 0 vy

bi(x)=; b'tklxkl"l' kZ’:c btklkgxklxkz+ Tt

Let M,=min{s: max |oyu,...x,/>>0}, My=min{s: max |buy,...,,|>>0},
i,j'kl"--,k' 'l:,kl,"',k:

—mi M,+1
and L_mm{ 5 ,M,}. Set
(6) az,(t)= Zj,‘ 815A@®) | 2B dB () +b,(A®)) | () =1 dt,

where

TighrkrPhy* " iy L is integer
64y =11, 1z | |F
0 L is not integer,
b= LT .
k1yee koL -1 |x|

Then (2) always holds for coefficients in (1) and (6), with m=L.

§3. Let M be a two dimensional, compact, analytic manifold.
A diffusion process z(t) on M is given by the stochastic differential equa-
tions, defined on each local chart (U,,7,) (see [5]),

(1) U @)=V (x(s)) +[ 0. (x(w)))dB®) +j bW () du.

Assume that the coefficients {a,, b,} in (7) are C*-class. (For sto-
chastic differential equations induced by Khas’mingkii’s sharp stability
criterion, this condition always holds and M is the unit spherical sur-
face, see [1] or [4].)

Let a point ¢, on M be such that
(8) [(@.aHT(2))|=0 and [b(¥.(q))|=0.

For simplicity, let ¥, (g)={0}. If 2(t)=¥(x(%)), then the approxima-
tion of (7) is given by (6) in a neighbourhood of {0}. By Remark 1, we
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may assume that L=1 in (6). After extending naturally (6) to the
whole space R?, we have (see [1])

(9) lim _1_ log |#(8)|=lim % f : QUw)du  as.,
t—oo t—oo

where A(t) =2(t)/|£(t)|=(cos 4(t), sin 4()) and Q is a function obtained
by Ito’s formula.

Following to [8], we can really compute the right hand side of (9),
which we denote by J,. In general, J,, is depending on a starting
point of #(¢) and random. However if we assume that
(10) 1665 >0  for any 2,
then J,, is a constant (see [3]).

From Theorems 1 and 2, we see that =(f) is asymptotic stable
(divergent) in probability at ¢, if J,,<<0 (>0). From those and the other
results formulated in [2], we have:

Theorem 3. Let q, (i=1, --.,m) be such points as (8 and (10)
hold. Let rank [(aa*)@(Q))1=2 for all q (+49,’s).

(i) If J,,>0 for 1<i<m, then n(t) is recurrent on M—{q;: i=1,
.-+, m}, t.e., for any open set OCM,

P{r,<oo}=1 q&{q::i=1,--.,m},
where ty s the first hitting time for O.
(i) If J,,<0 for 1<i<j and if J4,>0 for j+1=i=m, then
P, {ltim n(t) e {q;: i=1, - -+, 7}}=1

for all q&{q;: i=5+1, ---,m}.
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