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167. A Remark on the Sobolev Inequality for
Riemannian Submanifolds

By Tominosuke OTSUKI
Tokyo Institute of Technology

(Comm. by Kinjird KUNUGI, M. J. A., Oct. 13, 1975)

Recently, D. Hoffman and J. Spruck proved a Sobolev inequality
in [2] as follows:
Let M—M be an isometric immersion of Riemannian manifolds of
dimension m and n, respectively. Using the following quantities:
K_=sectional curvature for plane section = in M,
H=mean curvature vector field of the immersion,
R(M)=minimum distance for the cut locus in M for all points in
M,
w,=volume of the unit ball in R™
and
b=a positive real number
and assuming K,<?b? then for any non-negative C!' function % on M
with compact support and 2|0M =0 we have

(1) ( [ hmﬂm-”dVM)””'”’"‘gc(m) [ upri+niHDavL,
M M

provided
(2) b{—l— Vol (supp h)}”’"<1

Ql—a)wn =
and

L o1 " olp

(8)  pyi= sin [b{(l—oc)a)m Vol (supp h)} ]=2R(M),

where « is a free parameter, 0<a<1, and
._71'.2""2. m_ 1 1/m
4) c(m)_c(m,a)._-z— a m—1 {(l—a)wm}

This inequality is very important from the geometric point of view,
gince this type of inequalities will have a number of interesting applica-
tions in differential geometry. In this short paper, we will show that
¢(m) in (1) must be revised by a more sharper constant, for example

cd(m)=c'(m,a,t)

4" o (m—a)t" ' —(1—a) m { 1 }Vm
T2 (m—1a m—1 | (Q—a)o,

provided (2) and

3" tox <R(M),

where 0 <o <1 and 2t
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Ag is shown in [2], the inequality (1) is implied from Lemma 4.2.
But, in the proof of this lemma, they made some elementary mistakes
in integral calculation, and so their Sobolev and isoperimetric inequal-
ities must be revised in constants ¢(m) and so forth. In place of Lemma
4.2 in [2] for the real b case, we shall give the following

Lemma. Let &e M be such that h(&)=1. Leta,t satisfy 0<a<l
<t. Set

. l - [ 1/m
(5) poi=7 sin b{——(l - j thM} ]
provided

6 b= | RdV <1.
(6) { a- a)com f M}
Then, there exists a p, 0<p<p,, such that

- m—at™'—1—a) -

7 to) <
7) ¢e( P)_ (m—Da Po*l’e(.o)
provided
(8) to, < R(M).

In the statement of the lemma, §, and ¥, are defined by
(9) B0 =j hdV
MNABy(§)
(10) Pe@i=[,  UPRI+RIHNAVa,
M By (&)

and B,(¢) is the geodesic ball in M with center ¢ and radius p. (7) can
be replaced with a more simpler but duller one:

) @(tp)é—ti"’;;t“tm-lpo«m(p).

Proof of Lemma. As is stated in the proof of Lemma 4.2 in [2],
we have

ap  Ginb)Elo—os (sinbp) " Fi(e0 + [ sin o) "Ftordo

for all ¢ and o, 0<e<o<p,.

In place of (7), we set
(12) ¢e(tp)S o‘!’e(P),

where 1 is a constant depending on «, t and m determined afterwards.
Suppose there exists no p, 0<p<p,, satisfying (12), namely that

13) Ve(p) < t"‘ 5 ae(tp) for all p € (0, py).
Then, by changing of the 1ntegra1 parameters, we have easily
I"" (sin be) P (p)dp<—2 I"“ (sin be)~"(tp)dp
0 At IPo 0

=z 1. (3 %) B0 [ (sn 5) et

(14)
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Since we have
sin _Z.>% sing  for 0<6<z, t>1
and 0<bp<x/2 for p € (0, p,), we obtain
5) 7" (sin 22) " Fd@do <t [ sin b0y "Fulo)do

<t™p, sup (sin bo) "¢ (0).

a€(0,00)
Next, making use of the fact that the function sin (b/¢)p of p is convex

upward for p € (0, tp,), we have
sin 20> 0 iy bo,  for 0<p<tp,
t too
hence we obtain

Jvcpo (sin éf.)—mdp<(_%_>m tpoi&: t(tm—l__l) i 00 '
o t Sin pr Po ‘om m_l (sin bpo)m

Since we have from (9)

(16) Bl = f vy,
the above inequality implies immediately

tpo . bp -m t(tm—-l_l)
an Lo (Sm—t) N = aar e bpo)m

We may assume m =2, then we have

21 cpmeip_1) for 1
m—1

f hdV .

and hence
tpo . b -m
17 ( _.P_) dp<tmi(t—1)-— [ nav
am Lo sin + d:(0)dp t—1- i bpg™ j e
Now, combining (15) and (17) or (17’) with (14), we get
fo
L (5in o) " F(dp <L sup (sin bo) (o)

a€(0,P0)
a(™1—1)
(m—1)at™? (sm bpo)"‘

a® f hdVy

or

0o _
j " (sin bp) " Fe(p)dp <L sup (sin bo) "Fy(@)
a€(0,p0)
as) L att=1)
it (sm bpo)m
On the other hand by the definition of p, we have

(19) W f thM_—(l Do
From (11), we have
sup (sin bo)~"3,(a) < (sin bpo)-%(po)+f:° (sin bp)~™F(p)dp.

e €(0,p0)

j hdV .
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From this inequality, (16), (19) and (18), we get

. e m=1__1) l—«

1—£) bo)~™ <{1 alt } Om.
( 7) Sup (I by MG) S\ s T
Since 7 is of C! class, we have
_____b"‘gze(a) =0On.
se®,o0 (Sin bo)™ —
Using this, the above inequality implies
m-1_1)

20 —2ca- {1 _"‘(t—__}
20) 7 U D
provided Ai=«. Therefore, if the positive constant 1 satisfies

1—%g(1—a){1+w},

(m—1)atm*
i.e.
1 ) =
then we reach a contradiction. Hence, setting
@2) = 1 <m—a— 1_“),
m—1 tm-t
we have
it (m—a)t™ ' —(1—a)
a (m—1)a
Thus, (7) must be true for some p, 0<p<p,. Q.E.D.

Here, we shall give an analogous formula to (7), which is derived
from the argument using (18’) in place of (18). From (11), (16), (19)
and (18") we get

(1_£) sup (sin be)-"3,(0) < {1+ at—1) } l-a,
A/ ec,00 At bm

and hence

, _a _ a(t—1)
@0) 1-%<a a){1+ - }

provided A=«. Therefore, if the positive constant 1 satisfies
1-220-aft+ =01,

At
i.e.
(21/) > (Z—a)t—(l——a)

= t ’
then we reach a contradiction. Hence, setting
(22/) 1= (Z—O()t—(l—“)
t s

we have

T @—a)t—(1=a) 4oy
o 24 )
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Thus, we have
@) 3uttey < B=N=Co) ynsg g )

and (7’) for some p, 0<p<p,, since
C—-a)t—(1—a)<tt+a—ta).

Last, we state an isoperimetric inequality for Riemannian sub-
manifolds, which is derived from (1) replaced c(m) by ¢’(m), in a re-
vised form of the one in [2].

Theorem. Let M be a compact submanifold with oM+¢ in @
Riemannian manifold M and assume K, <b?, b>0. Then, for 0<a<1,
t=2, we have

@3) (Vol (M))™=5/m < ¢/(m, , ) (Vol M) +L{ \H| dVM),
provided

24) b{(T__t—)J Vol (M)}Umgl
and . . o
(25) < sin” [b {m Vol (M)} ] <R,

where m=dim M.
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