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Tokyo Gakugei University

(Comm. by Kinjir KuNu(I, M. Z. t., Oct. 13, 1975)

Throughout this paper, by a space we shall mean a completely re-
gular T-space. According to Morita [14], [15], a space S is a countably-
compactificatio (----c--cf) of a given space X if

a) S is countably compact (--cc) and contains X as a dense subset,
and

b) every cc closed subset of X is closed also in S. In case X
admits a c-cf, X is said to be countably-compactifiable. Since X is
countably-compactifiable if and only if X has a c--cf S with X S fiX
([14], Proposition 3.4), in the sequel we will consider only a c-cf S of
X as a subspace S of fiX with the exception of 3. Interesting results
concerning countably-compactifiability have been obtained by Morita.
For example, an M-space X is countably-compactifiable if and only if
X is homeomorphic to a closed subset of a product space of a countably
compact space and a metric space [14], [15]. In [10] we introduced a
notion of closed c-cf and investigated some properties and characteri-
zations of spaces with the closed c--cf. Let S be a c--cf of X and
X*--flX-X and S*--S ( X*. S* is called the X*-section of S. In case
S* is closed in X*, we say that S is the closed c--cf of X. In Theorem
3.5 [10] it is proved that if X admits a closed c--cf, then it is uniquely
determined.

Concerning relations between countably-compactifiability of given
spaces and maps, it is natural to ask whether countably-compactifiability
of X (resp. Y) implies one of Y (resp. X)where Y is a quasi-perfect
image of X. For this problem, the following results have been obtained.

Theorem A (Morita [14], Proposition 4.2). Let f be a perfect
map from X onto Y. If Y is countably-compactifiable, then so is X.

Theorem B (Hoshina [2]). Let f be a quasi-perfect map from X
onto Y and X admits a c-cf Then we have

1) if either Y is normal or an M-space, then Y admits a c-cf
2) if f is open, then Y admits a c-cf
Theorem A implies that if f is a perfect map from X onto Y with

a c--cf T, then S=(flf)-IT=XJS* is a c-cf o X and fs=f[S is
obviously a perfect map from S onto T where S*=(flf)-T* and flf is
the Stone extension of f. But as shown by Example 3.1, S is not
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necessarily a c--cf of X when f is quasi-perfect. On the other hand,
even if f is a perfect map from X with the closed c--cf S onto Y, f(S)
is not necessarily a c-cf of Y as shown by Example 3.2 which also
shows that "M-ness" is not invariant under a perfect map as proved
by Morita [12].

In this paper, concerning these examples and Theorems A and B
we shall prove two Theorems 1.5 and 2.1 which imply the following as
special cases.

1) If f is a quasi-perfect map from X onto Y with a c--cf T and
either X is an M-space or Y is locally compact, then the closedness of
fs is equivalent to the condition that S is a c-cf of X.

2) Under the assumption that f is perfect map from an M-space
X onto Y and X admits the closed c-cf, the "M-ness" of Y is equivalent
to the condition that Y admits the closed c-cf.

1. In this section, we assume that for a map f from X onto Y
and Y T flY, we put

T*=TY*,(flf)-IT*=S*,S=X(JS* and f--fIS.
Verifications of Lemmas 1.1 and 1.3 and Corollary 1.2 are easy

from Theorem A and the definitions of c-cf and quasi-perfect maps.
Lemma 1.1. Let f be quasi-perfect. If S is a c-cf of X, then

T is a c-cf o Y.
Remark. The converse of Lemma 1.1 is not necessarily true even

if f is an open quasi-perfect map from an M-space onto an M-space as
shown by 4) and 7) of Example 3.1.

Corollary 1.2. If in Lemma 1.1, f is perfect, then S is a c-cf
(resp. the closed c-cf) of X if and only if T is a c--cf (resp. the closed
c--cf) of Y.

Lemma 1.:. If f is quasi-perfect and T is a c--cf of Y and fs
is closed, then S is a c-cf of X.

Lemma 1.4. Let f be quasi-perfect and S be a c-cf of X. If
one of the following conditions i) iii) is satisfied, then fs is closed.

i) Y is locally compact.
ii) S is the closed c-cf of X.

iii) X is an M-space.
Proof. We notice that f being quasi-perfect, f-(y) is cc and

hence clxf-(y)=(flf)-(y)/X) and S* (flf)-(y)= for every y e Y
[7]. Let F be a closed subset of S and E--flf(F). We shall prove that
E is closed in T. Suppose that there exists a point q e (clarE--E)g)T.

In case q e T*. Since (flf)-(q)S* and F is closed in S. (flf)-(q)
VI clzF= and hence there is an open set U of fiX such that (flf)-(q)

1) zx is the completion of X with respect to its finest uniformity and it is
known that the relation: XcXoXfiX holds (for example, see [13]).
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U and UclxF=O. Y-f(X-U) is an open set of Y contain-
ing q which is disjoint rom f(clzF)--clrE. This implies q e clarE
which is a contradiction. This allows us to assume that q e Y. Let
us put

Fx=FX,F*=FS*,E--EY and E*--ET*.
Since S*--(flf)-lT*, we have Ey--f(Fx) and flf(F*)-=E*.

a) Since f is closed, Er is closed in Y and hence q e clarEt which
implies q e clarE*. (Thus if Y is locally compact, then fs is a closed
map.)

b) In case q e Y VI clyE* and q e clE. Since flf(clxF*)
--clarE* q, we have (flf)-(q) clxF* is not empty and contained in
X*-S*. (Thus, if S is the closed c-cf of X, then fs is closed.)

c) Now suppose that X is an M-space. Since/X is a paracompact
M-space [11], /X is of countable type [1] and hence there is a family
{U} o open sets of fiX which is a neighborhood base at K with
clxUn_ U where K is a compact subset of pX containing q. (flf)-(q)
being compact and disjoint from clzFx, there is an open set G of fiX
such that

clxFx clxG--O and (flf)-(q) G.
Let us put Kn--clxG clxUn F. Since clxF* gl (flf)-l(q), Kn
and Kn is cc, we have that K0---C)K:/: and KoS*. On the other
hand, we have K0/X which is impossible. Thus if X is an M-space,
then fs is closed.

Remark. T is always a c--cf of Y by Lemma 1.1.
Theorem 1.5. Let f be a quasi-perfect map from X onto Y.
1) If either X is an M-space or Y is locally compact, then S is a

c-cf of X if and only if T is a c--cf of Y and fs is closed.
2) S is the closed c--cf of X if and only if T is the closed c--cf

of Y and fs is closed.
Proof. 1) is an immediate consequence o Lemmas 1.1, 1.2 and

1.4. To prove 2), it is sufficient to show that if S is the closed c--cf
of X, then T is also the closed c-cf of Y. S* being closed in X*,
clxS* is compact and contained in S. We have therefore clefT*
=(flf)(clxS*)flf(S)=T, that is, T is the closed c-cf of Y.

Corollary 1.6. Let f be a quasi-perfect map from X onto Y with

ac--cf T.
1) If either X is an M-space or Y is locally compact, then S is a

c-cf of X if and only if fs is closed.
2) If T is the closed c--cf of Y, then S is the closed c-cf of X

if and only if fs is closed.
2. In this section we consider only M-spaces.

Theorem 2.1. Let f be a perfect map from an M-space X onto
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Y, then Y admits the closed c-cf if and only if 1) X admits the closed
c-cf and 2) Y is an M-space.

Proof. Necessity. Let T be the closed c--cf of Y and S*
=(flf)-T*. Then S--X [J S* is the closed c-cf o X by Corollary 1.2.
Since X is an M-space, S*=X--IX by Theorem 5.2 [10] and/X is a
paracompact M-space. Thus S*=(flf)-T* implies (flf)-pY=/X which
shows that/Y is a paracompact M-space and hence Y is an M’-space
[13]. On the other hand, Y is an M*-space and countably paracompact
[3]. Thus Y is an M-space [6].

Sufficiency. Since X and Y are M-spaces,/f---flflzX is a perfect
map from/X onto/Y by Theorem 3.4 [13]. Thus by Corollary 1.2 Y
admits the closed c--cf T= Y U (Y=gY).

Corollary 2.2. If f is a perfect map from an M-space X onto an
M-space Y, then X admits the closed c-cf if and only if Y admits the
closed c--cf

Corollary 2.:}. If f is a perfect map from an M-space X onto Y
and X admits the closed c-cf, then Y is an M-space if and only if Y
admits the closed c--cf

Theorem 2.4. Let f be an open quasi-perfect map from an M-
space X onto Y, then

1) If X admits the closed c--cf, then Y admits the closed c-cf2.
2) If X is locally compact, then the converse of 1) is true.
Proof. We notice that f being open and closed, Y is an M-space

[16].
1) The closed c-cf S of X has the form S=X (flX-zX). Since

(f)-IY--/X by Theorem 3.4 [13], we have (flf)-(Y--pY)=flX-zX.
Thus T Y [J (flY--/Y) is a c-- cf of Y by Lemma 1.1. The closedness
(in T*) of T* is obvious.

2) Since Y is an M-space, the closed c--cf T of Y has the form
T.-Y (Y--tY). On the other hand, X being locally compact and f
being open and closed, Y is locally compact and hence we have that
Y--IuY is compact. Let us put S X t5 (flX-tuX). From (flf)-T* =S*,
S* is compact and it is easy to see that S is the closed c--cf of X.

Remark. If X is not locally compact, the converse of 1)is not
necessarily true (see (2) of Example 3.1).

:. txamples. Let Q be the set of all rational numbers, N the
set of positive integers and/2 the first uncountable ordinal.

txampe :}.1. Let f be the projection from X=Q[0,9) onto
Y--Qo

2) Using Theorem B, Hoshina pointed out that 1) is true without the assump-
tion "M-ness of X". For, if f is an open quasi-perfect map from X with the
closed c-cf S onto Y, then T=f(S) is a c-cf of Y and it is easy to see that T*
is closed in Y*.



Suppl.] Closed Countably-Compactifications 783

1) f is open and quasi-perfect but not perfect.
2) X is an M-space [4, 7] and S(X)--X is not paracompact and

hence X does not admit the closed c--cf [10].
3) Let be the identity map from X(fiX) onto X(flQ [0, tO]).

Then S---(flQ[O, 9])is a c-cf of. X by Corollary 1.2 where is
the Stone extension of . But S is not the closed c--cf of X by 2).
Since Q* [0,/2) is dense in/Q [0, tO], we have clxS* --fiX.

4) Y admits the closed c-cf flY because Y--IY [10, 14].
Since f is closed, we have [X--Q [0, tO] [8, 9].
(flf)-lQ ((/f)-ly y e Y} U (clxf-(y) y e Y} Q [0,/2]

5)
6)

7) S=X U (flf)-(Y-- Y) is not a c-cf of X.
Proof. Suppose that S. is a c-cf of X. By 5) zX--Q[O, 9].

/X is C*-embedded in fiX, and hence K--{(a, tO) a e Q} is C*-embedded
in fiX. Thus clzK is homeomorphic with K and X* clzK--K* is
closed. X being an M-space,/X is of countable type and hence fiX--/X
is LindelS ([1] or 2.11 o [12]). K* is a closed subset of. X (flX--zX)
which implies the countable compactness of K*. Thus K* is cc and
LindelSf, that is, compact which is a contradiction.

Example 3.2. Let X, Y and f be spaces and a map constructed
by Morita in [12, [14] and let us put an-([2, ) or each n e N. It is
proved that 1) f is a perfect map from a locally compact M-space X
onto a locally compact space Y which is not an M-space [12] and 2)
Y-- Y-{p} and Y-ttY is cc and hence T-- Y t.J (flY--IY) is a c--cf
of Y [14]. It is obvious that T is not the closed c--cf of_ Y (For the
details of the construction of. X, Y,f and the point p, see [12]).

1) (flf)-(flY--{p})=flX--clx {an n e N} is a c--cf of X by
Corollary 1.2 whose X*-section is not closed in X*. It is obvious that
X U (flX--ttX) is the one-point c-cf of X because pX is open in fiX
([10, 14]).

2) f(XU (X-tX))=Y is not a c-cf of Y.
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