1. The Exact Functor Theorem for $\mathbf{B P}_{*} / \mathbf{I}_{n}$-Theory

By Nobuaki Yagita
Department of Mathematics, Tokyo Institute of Technology
(Comm. by Kenjiro Shoda, M. J. A., Jan. 12, 1976)

§ 1. Let p be a prime number and $B P_{*}(-)$ be the Brown-Peterson homology theory with the coefficient $B P_{*} \simeq Z_{(p)}\left[v_{1}, \cdots\right]$. Landweber proved the following theorem [4].

Exact functor theorem. Let G be a $B P_{*}$-module and $I_{n}=\left(p, v_{1}\right.$, \cdots, v_{n}) be the ideal of $B P_{*}$ generated by p, v_{1}, \cdots, v_{n}. Then if the homomorphism

$$
v_{n+1}: G / I_{n} G \rightarrow G / I_{n} G, \quad v_{n+1}(g)=v_{n+1} \cdot g,
$$

is monic for each $n \geqq-1$, then $B P_{*}(-) \underset{B P_{*}}{\otimes} G$ is a homology theory.
On the other hand Sullivan-Baas constructed bordism theories with singularities (Math. Scan. 33, 1973). Analogously we can define the homology theory $B P\left(I_{n}\right)_{*}(-)$ with the coefficient $B P_{*} / I_{n} \simeq Z_{p}\left[v_{n+1}, \cdots\right]$ [2], [8]. In this paper we shall prove the exact functor theorem for $B P\left(I_{n}\right)_{*}$-theory.

Theorem. Let G be a $B P_{*} / I_{n}$-module. If the homomorphism

$$
v_{m+1}: G / I_{m} G \rightarrow G / I_{m} G
$$

is monic for each $m \geqq n$, then $B P\left(I_{n}\right)_{*}(-)_{B P_{*} / I_{n}}^{\otimes} G$ is a homology theory.
Remark. We always consider reduced homology theories in the category of finite $C W$-complexes.

I would like to take this opportunity to thank Professors D. C. Johnson, P. Landweber, S. Sasao and Z. Yosimura for their helpful suggestions in preparing this paper.
§ 2. First, we take argument in the cohomology theory $B P\left(I_{n}\right) *(-)$ which is the Spanier-Whitehead dual to $B P\left(I_{n}\right)_{*}(-)$.

Lemma 1. Let M be a finitely generated $B P^{*} / I_{n^{-}}$and $B P\left(I_{n}\right)^{*}$ ($B P\left(I_{n}\right)$)-module. Then there exists a $B P^{*} / I_{n}$-filtration such that

$$
\begin{gather*}
M=M_{0} \supset M_{1} \supset \cdots \supset M_{k}=\{0\} \tag{1}\\
M_{s} / M_{s+1} \simeq B P^{*} / J_{s} \quad \text { for } 0 \leqq s<k \tag{2}
\end{gather*}
$$

where J_{s} is an (invariant) ideal of $B P^{*}$ satisfying $\theta\left(J_{s}\right) \subset J_{s}$ for any operation $\theta \in B P^{*}(B P)$.

Proof. For each $\theta \in B P^{*}(B P)$, let $\bar{\theta}_{n}$ be the set of θ_{n} $\in B P\left(I_{n}\right)^{*}\left(B P\left(I_{n}\right)\right)$ which commute the following diagram.

where i is the natural inclusion map. Since $B P\left(I_{n}\right) *\left(B P\left(I_{n}\right)\right) \simeq B P^{*} / I_{n}$ $\hat{\otimes} R \otimes \Lambda\left[Q_{0}, \cdots, Q_{n}\right]$ and R is a $Z_{(p)}$-free module which is generated by $\left\{\left(r_{\alpha}\right)_{n}\right\}$ ([2], [7], [8]), if $\theta_{1}, \theta_{2} \in \bar{\theta}_{n}$, we can write $\theta_{1}-\theta_{2}=\sum_{r} l_{r} \cdot \Phi_{r}$ where $l_{r} \in B P^{*} / I_{n}, \Phi_{r} \in R \otimes \Lambda\left[Q_{0}, \cdots, Q_{n}\right]$. Since Φ_{r} contains at least one Q_{i}, we have $\operatorname{dim} \Phi_{r}>0$. Since $r_{\alpha} k=\sum_{\alpha=\beta+r} r_{\beta}(k) \cdot r_{r}$ (Cartan formula) for $r_{\alpha} \in B P^{*}(B P)$ and $k \in B P^{*},\left(\overline{\left.r_{\alpha} k\right)_{n}}\right.$ contains $\left(r_{\alpha}\right)_{n} k$ and $\sum_{\alpha=\beta+\gamma} r_{\beta}(k) \cdot\left(r_{\gamma}\right)_{n}$. Then we have

$$
\left(r_{\alpha}\right)_{n} k=\sum_{\alpha=\beta+r} r_{\beta}(k) \cdot\left(r_{r}\right)_{n}+\sum l_{r}(k) \Phi_{r}(k) .
$$

Now let $\left[\sigma_{0}, \cdots, \sigma_{m}\right]$ be a system of $B P^{*} / I_{n}$-module generators of $M\left(\operatorname{dim} \sigma_{i} \geqq \operatorname{dim} \sigma_{i+1}\right.$ for $\left.0 \leqq i<m\right)$. If $k \sigma_{0}=0$, we get

$$
\begin{aligned}
0 & =\left(r_{\alpha}\right)_{n}\left(k \sigma_{0}\right)=\sum_{\alpha=\beta+r} r_{\beta}(k)\left(r_{r}\right)_{n}\left(\sigma_{0}\right)+\sum l_{r}(k) \Phi_{r}(k)\left(\sigma_{0}\right) \\
& =r_{\alpha}(k) \sigma_{0} \quad \text { (by dimensional reason) } .
\end{aligned}
$$

This shows the anihilator ideal $A\left(\sigma_{0}\right)$ of σ_{0} is an invariant ideal. Take $M_{1}=[0]$ and $M_{0}=B P^{*} / I_{n} \cdot \sigma_{0} \subset M$, then $M_{0} / M_{1} \simeq B P^{*} / A\left(\sigma_{0}\right)$ is a $B P\left(I_{n}\right)^{*}\left(B P\left(I_{n}\right)\right)$-module, so is M / M_{0}. By induction we can complete the proof.

In the following, suppose G is a $B P^{*} / I_{n}$-module so that the homomorphism

$$
v_{m+1}: G / I_{m} G \rightarrow G / I_{m} G, \quad v_{m_{+1}}(g)=v_{m+1} \cdot g
$$

is monic for each $m \geqq n$.
Lemma 2. $\operatorname{Tor}_{1}^{B P^{*} / I_{n}}\left(B P^{*} / I_{m}, G\right)=0$ for all $m \geqq n$.
Proof. From the short exact sequence,

$$
0 \longrightarrow B P^{*} / I_{m} \xrightarrow{v_{m+1}} B P^{*} / I_{m} \xrightarrow{i} B P^{*} / I_{m+1} \longrightarrow 0
$$

we get the following exact sequence

$$
\operatorname{Tor}_{1}^{B P^{*} / I_{n}}\left(B P^{*} / I_{m}, G\right) \xrightarrow{i_{1}} \operatorname{Tor}_{1}^{B P^{*} / I_{n}}\left(B P^{*} / I_{m+1}, G\right) \longrightarrow G / I_{m} G \xrightarrow{v_{m+1}} G / I_{m} G
$$

Since $v_{m+1} \mid G / I_{m} G$ is monic, i_{1} is epic. But $\operatorname{Tor}_{1}^{B P^{*} / I_{n}}\left(B P^{*} / I_{n}, G\right)=0$ clearly, hence we get $\operatorname{Tor}_{1}^{B P^{*} / I_{n}}\left(B P^{*} / I_{m}, G\right)=0$ for all $m \geqq n$.

Lemma 3. Let M be a finitely presented $B P^{*} / I_{n^{-}}$and $B P\left(I_{n}\right) *\left(B P\left(I_{n}\right)\right)$-module. Then we have $\operatorname{Tor}_{1}^{B P^{*} / I_{n}}(M, G)=0$.

Proof. If J is a finitely generated invariant ideal, there is a $B P_{*^{-}}$ filtration such that

$$
B P^{*} / J=B_{0} \supset B_{1} \supset \cdots \supset B_{r}=\{0\}, B_{i} / B_{i+1} \simeq B P^{*} / I_{n_{i}}
$$

for $n_{i} \geqq n$ (see [3]). Hence from Lemma 2, $\operatorname{Tor}_{1}^{B P^{*} / I_{n}}\left(B P^{*} / J, G\right)=0$. Now, from Lemma 1, the proof is clear.

Now we proceed to the proof of the exact functor theorem for $B P\left(I_{n}\right)_{*}$-theory. It is easily seen that $B P\left(I_{n}\right)^{*}(-){ }_{B P^{*}+I_{n}} G$ satisfies the Eilenberg-Steenrod cohomology axioms except for exact and dimension axioms. Let $f^{*}: B P\left(I_{n}\right)^{*}(Y) \rightarrow B P\left(I_{n}\right)^{*}(X)$ be the induced map from a continuous map $f: X \rightarrow Y$. Since $B P\left(I_{n}\right)^{*}(X)$ is a finitely presented $B P^{*} / I_{n^{-}}$and $B P\left(I_{n}\right)^{*}\left(B P\left(I_{n}\right)\right)$-module, so are ker. f^{*} and coker. f^{*}.

From Lemma 3 the exact axiom also satisfies. Then by taking duality, the proof is completed.
§3. As an application we get the following Johnson-Wilson theorem for $B P_{*} / I_{n}$, by using the same techniques as [1] [4].

Theorem. Follows are equivalent for a finite complex X.

$$
\begin{equation*}
\text { hom } \operatorname{dim}_{B P_{*} / I_{n}} B P\left(I_{n}\right)_{*}(X)<m-n, \tag{1}
\end{equation*}
$$

(2) $B P\left(\cdots, v_{n}, v_{m+1}, \cdots\right)_{*}(X) \simeq B P_{*} /\left(v_{m+1}, \cdots\right) \otimes B P\left(I_{n}\right)_{*}(X)$, where $B P\left(\cdots, v_{n}, v_{m+1}, \cdots\right)_{*}(X)$ is the bordism theory with the coefficient $B P_{*} /\left(\cdots, v_{n}, v_{m+1}, \cdots\right) \simeq Z_{p}\left[v_{n+1}, \cdots, v_{m}\right]$.

Next let $K(n)_{*}(-)$ be an extraordinary K-theory with the coefficient $Z_{p}\left[v_{n}, v_{n}^{-1}\right]$. Then from the theorem we can easily deduced the following Conner-Floyd theorem for $B P_{*} / I_{n}$ ([2], [5], [6]).

Theorem (Morava), $B P\left(I_{n-1}\right)_{*}(X) \underset{B P_{*}}{\otimes} Z_{p}\left[v_{n}, v_{n}^{-1}\right] \simeq K(n)_{*}(X)$.
And we can prove the following Hattori-Stong theorem for $B P_{*} / I_{n}$ 。

Theorem. Let h be the Hurewicz homomorphism

$$
h: \pi_{*}\left(B P\left(I_{n-1}\right)\right) \rightarrow K(n)_{*}\left(B P\left(I_{n-1}\right)\right) .
$$

Then h is a monomorphism.

References

[1] D. C. Johnson and W. S. Wilson: Projective dimension and Brown-Peterson homology. Topology, 12, 327-353 (1973).
[2] -: $B P$ operation and Morava's extraordinary K-theories. Math. Z., 144, 55-75 (1975).
[3] P. S. Landweber: Anihilator ideals and primitive elements in complex bordism. Ill. J. M., 17, 273-284 (1973).
[4] --: Homological properties of comodules over $M U(M U)$ and $B P(B P)$ (to appear).
[5] J. Morava: Structure theorems for cobordism comodules (to appear).
[6] ——: Unitary Cobordism and Extraordinary K-Theories. Columbia University preprint.
[7] -: in preparation.
[8] N. Yagita: On bordism operations with singularities (preprint).

