15. A Note on n-movability and S^k-movability*)

By Jin ONO

Department of Mathematics, Tokyo University of Education (Comm. by Kôsaku Yosida, M. J. A., Feb. 12, 1976)

The following problem was raised by K. Borsuk in [4]. "Let S^k denote the k-dimensional sphere. Does there exist a compactum X which is S^k -movable for $k=1,2,\cdots n$, but is not n-movable?" In this paper, we will construct such a continuum X for the case of $n \ge 2$.

The concepts of *n*-movability and *A*-movability were originally given by K. Borsuk in [3] and [4], and they are equivalent to the following definitions. Let X be a compactum and $X=\{X_n, p_{nn'}, N\}$ be an ANR-sequence associated with X, where each X_n , $n \in N$, is a regular ANR-space (see [6]).

Definition 1 (Y. Kodama and T. Watanabe [6]). A compactum X is said to be k-movable if for each $n \in N$ there is $n' \in N$, $n' \ge n$, such that for each $n'' \in N$, $n'' \ge n$, and for each compact set $K \subset X_n$, with dim $K \le k$, there is a map $f_{n''} : K \to X_{n''}$ satisfying the homotopy relation: $p_{nn''}f_{n''} \simeq p_{nn'}|_K : K \to X_n$.

Definition 2. Let A be a compactum. A compactum X is said to be A-movable if for each $n \in N$ there is $n' \in N$, $n' \ge n$, such that for each $n'' \in N$, $n'' \ge n$, and for each map $f: A \to X_{n'}$, there is a map $f_{n''}: A \to X_{n''}$ satisfying the homotopy relation: $p_{nn''}f_{n''} \simeq p_{nn'}f: A \to X_n$.

The equivalence of the concept of A-movability in Definition 2 and the original one can be shown by the same way as in the proof of Theorem 3 of [5].

Our example is homeomorphic to the continuum constructed by K. Borsuk [2]. For completeness we give its construction. Consider the following compact subsets of an Euclidean 3-space R^3 :

$$A_{1} = \{(x, y, z) \mid x^{2} + y^{2} + z^{2} = 5, |x| \leq 2, |z| \leq 2, \}$$

$$\cup \{(x, y, z) \mid x^{2} + y^{2} = 1, |z| \leq 2\}$$

$$B_{0} = \{(x, y, z) \mid x^{2} + y^{2} + z^{2} = 5, |x| \leq -2\}$$

$$B_{1} = \{(x, y, z) \mid x^{2} + y^{2} + z^{2} = 5, x \geq 2\}$$

$$A_{n} = \{(x, y, z) \mid (x - 4n + 4, y, z) \in A_{1}\}, \qquad n = 2, 3, \cdots$$

$$B_{n} = \{(x, y, z) \mid (x - 4n + 4, y, z) \in B_{1}\}, \qquad n = 2, 3, \cdots$$

Put $X_n = B_0 \cup A_1 \cup A_2 \cup \cdots \cup A_n \cup B_n$, for each $n \in \mathbb{N}$. For $n, n' \in \mathbb{N}$, n' > n, define a map $p_{nn'} : X_{n'} \to X_n$ by

^{*)} Dedicated to Professor Kiiti Morita for his 60th birthday.

$$\begin{aligned} & p_{nn'}(x,y,z) \\ & = \begin{cases} (x,y,z) & \text{if } x \leq 4n-2 \\ \left(x,\sqrt{\frac{5-(4n-x)^2}{5-(x-4n+4)^2}}y,\sqrt{\frac{5-(4n-x)^2}{5-(x-4n+4)^2}}z\right) & \text{if } 4n-2 \leq x \\ & \leq 4n-4+\sqrt{5} \end{cases} \\ & (4n-4+\sqrt{5},0,0) & \text{if } 4n-4+\sqrt{5} \leq 4. \end{aligned}$$

Then we have an ANR-sequence $X=\{X_n, p_{nn'}, N\}$ consisting of regular ANR-spaces. Note that X_n is a closed orientable 2-manifold of genus n, and $p_{nn'}$ is a map of degree 1, for each $n, n' \in N$, n' > n.

Proposition 1. X is S^k -movable for $k=1,2,3,\cdots$.

Proof. It is sufficient to show that for each $n \in N$ and each map $f: S^k \to X_n$, there exists a map $g: S^k \to X_n$ such that $f \simeq g$ and $g(S^k) \subset X_n \setminus B_n$. Because for any $n'' \in N$, n'' > n, $p_{nn''} \mid X_n \setminus B_n$ is the identity map, so if we define $f_{n''}: S^k \to X_{n''}$ by $f_{n''}(s) = g(s)$ for each $s \in S^k$ then $f \simeq g = p_{nn''} f_{n''}$.

Case 1 (k=1). Both S^1 and X_n are polyhedra, so there is a simplicial map $h: S^1 \to X_n$ such that $h \simeq f$. The image of h is a compact 1-dimensional subpolyhedron of 2-dimensional polyhedron X_n , so there is a small disk D in $X_n \setminus h(S^1)$. It is clear that there is an isotopy $I_t: X_n \to X_n$ $(t \in [0,1])$ such that $I_0 = id_{X_n}$, and $I_1(D) = B_n$. So we may define g by $g = I_1 h$. Hence X is S^1 -movable.

Case 2 $(k \ge 2)$. Since X_n is a closed orientable 2-manifold of genus n, it is well known ([8], p. 178) that the k-dimensional homotopy group of X_n is zero for $k=2,3,4,\cdots$ and for $n=1,2,3,\cdots$. Hence X is S^k -movable for $k\ge 2$.

Proposition 2. X is not 2-movable.

Proof. Suppose that X is 2-movable. Then for each $n \in N$, there is $n' \in N$, $n' \ge n$, such that for each $n'' \in N$, $n'' \ge n$, there is a map $f_{n''}: X_{n'} \to X_{n''}$ satisfying that $p_{nn''} f_{n''} \simeq p_{nn'}$. (Because of dim $X_{n'} = 2$) Two maps $p_{nn'}$ and $p_{nn''}$ are both of degree 1 so $f_{n''}$ must be also of degree 1. But X_n is a closed orientable 2-manifold of genus n for $n \in N$, so by a theorem of H. Kneser [7] there is no map with degree 1 of $X_{n'}$ onto $X_{n''}$ if n'' > n'. It contradicts our hypothesis.

Our proof of Proposition 2 is essentially the same as Borsuk's one in [2]. Also Proposition 2 follows from Borsuk [2] and Kodama-Watanabe [6 Theorem 3].

The author wishes to thank Professor Y. Kodama for his helpful comments.

References

- [1] K. Borsuk: On movable compacta. Fund. Math., 66, 137-146 (1969).
- [2] —: On a locally connected non-movable continuum. Bull. Acad. Polon. Sci. Ser. sci. math. astronom. et phys., 17, 425-430 (1969).

- [3] K. Borsuk: On the *n*-movability. ibid., **20**, 859-864 (1972).
- [4] —: On some hereditable shape properties. Ann. Polon. Math., 29, 83-86 (1974).
- [5] S. Mardešić and J. Segal: Movable compacta and ANR-systems. Bull. Acad. Polon., 18, 649-654 (1970).
- [6] Y. Kodama and T. Watanabe: A note on Borsuk's n-movability. ibid, 22, 289-294 (1974).
- [7] H. Kneser: Die kleinste Bedeckungszahl innerhalb einer Klasse von Flachenabbildungen. Math. Ann., 103, 347-358 (1930).
- [8] S. Lefschetz: Introduction to Topology. Princeton University Press.