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26. On the Irreducible Characters of
the Finite Unitary Groups

By Noriaki KAWANAKA
Department of Mathematics, Osaka University

(Comm. by Kenjiro SHODA, M. J. A.,, March 12, 1976)

Let k& be a finite field, and k, the quadratic extension of k. The
purpose of the present paper is to announce a theorem which gives a
method to construct the irreducible characters of the finite unitary
group U,(k,) using those of the finite general linear group GL,(k,), at
least if the characteristic of k is not 2. As an application, we also
obtain a parametrization of the irreducible characters of U,(k,) which
is dual to a known parametrization of the conjugacy classes. Proofs
are omitted and will appear elsewhere.

1. Let & be the general linear group GL,(K) over an algebraically
closed field K of positive characteristic p. Let k be a finite subfield
of K, and k,(CK) the extension of k of degree m <co. We denote by
7 the Frobenius automorphism of K with respect to k. Then 7 acts
naturally on & as an automorphism. Let ¢ be the automorphism of
@& defined by

=2 (xe©®),
where ‘x is the transposed matrix of x € . For a positive integer m,
put
Gm={re G|lx"=u}.
Then we have
© = {GLn(km) if m is even,
U Keym) if m-is odd.

In the following, we fix m and put G=6,. and G,=6,=U,(k,).
The restriction of ¢ to G is an automorphism of the finite group G. In
the following, we denote this automorphism also by ¢. Let A be the
cyclic group of order m generated by the automorphism ¢ of G. As-
sume that G and A are embedded in their semi-direct product GA. The
following lemma is well known.

Lemma 1. Let H be a finite group, and A a finite cyclic group
generated by an automorphism ¢ of H. If an irreducible complex
character x of H is fixed by ¢ (i.e. satisfies y(x°)=yx(x) for all x € H),
then there exists an irreducible character j of the semi-direct product
HA whose restriction to H equals y.

For x e G=G,., put N(x)=xx 2" - . """,
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Lemma 2. (a) Let x be an element of G. The conjugacy class
Cs(N(x)) of N(x) in G contains an element of G,. Moreover, Cxz(N(x))
NG, forms a single conjugacy class of G,.

() Let z and y be elements of G such that the elements xo and
yo of GA are conjugate to each other. Then, Cx(N(@)NG,=Cs(N(¥))
naG,.

() For x e @G, we denote by Cg.(xe) the conjugacy class of xe in
GA. The correspondence Jl from the set of GA-conjugacy classes of
{xe|x € G} into the set of conjugacy classes of G, defined by

J(Cea(xa)=Co(N@) NG, (xe@)
18 bijective.

@ |Ceu@d)] |G '=|CeN@)NG,||G,| ! for all ze G. (For a set
S, |S| denotes the number of its elements.)

2. Theorem. Assume that m is not divisible by p. Let x be a
a-tnvariant irreducible character of G, and § an extension of y to an
irreducible character of GA (see Lemma 1). Then there exists a
unique trreducible character v, of G, which depends only on y and
satisfies

J@o)= =, (@)  (weq),
where n(x) is an arbitrary element of Ce(N(x)) NG, (see Lemma 2), {
=exp ri/m), and a is an integer. Moreover, the mapping y—y, is @
bijection between the set of g-invariant irreducible characters of G and
the set of irreducible characters of G,. In particular, if char (k)+2,
all the trreducible characters of G, may be obtained in this way.

Remark 1. This theorem, and its proof, are valid even if one
replace ¢ with the Frobenius automorphism . Using Green’s deep
results [2], Shintani [3] proved the z-case without assuming that m is
not divisible by p. Our proof is independent of Green’s results [2].

3. Put L=k,,,. We consider that ¢ acts on L*=GL,(k,,,) and
on L*=Hom (L*, C¥) by

tr=t"9,  w@®=ult"9 (teL*, uelX),

where ¢ is the number of elements of k. We denote by & and &
respectively, the set of g-orbits in L* and L*. For an element fing
(or &) we denote by d(f) the cardinality of the orbit f. Let @ be the
set of partitions, i.e. decreasing sequences v=(y,,v,, * - -, v,) of positive
integers v,. For convention, we consider that & contains the empty
partition ¢. Forve P, put [v|=23,v; if v#4, and |¢|=0. Using the
Theorem with m=2 and a parametrization of the irreducible char-
acters of GL,(k,) due to J. A. Green [2], we see that the irreducible
characters of U,(k,) (char(k)#2) are naturally parametrized by the set
of functions 1: F—P, which satisfies

Treg AN () =n.
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Remark 2. It is known [1] and easy to see that the conjugacy
classes of U,(k,) are naturally parametrized by the set of functions
A: F—P, which satisfies

2.req |1 AN d(N)=n.
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