49. Some Results on Additive Number Theory. I

By Minoru TANAKA

Department of Mathematics, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo

(Comm. by Kunihiko Kodaira, M. J. A., April 12, 1976)

In his previous papers [2]–[5], the author gave some generalizations of the theorem of Erdös and Kac in [1]. In this note we shall give some theorems on additive number theory which are obtainable by similar methods as in the above papers. The detailed proofs will be given elsewhere.

Let k be an integer >1; let l_i $(i=1, \dots, k)$ be positive integers, and put $l_0 = l_1 + \dots + l_k$.

Theorem 1. Let P_{ij} ($i=1, \dots, k$; $j=1, \dots, l_i$) be sets, each consisting of prime numbers, subject to the following conditions:

- (C₁) For each $i=1, \dots, k$, the sets P_{ij} $(j=1, \dots, l_i)$ are pairwise disjoint;
 - (C_2) As $x \to \infty$,

$$\sum_{p \le x, p \in P_{i,j}} \frac{1}{p} = \lambda_{i,j} \log \log x + o(\sqrt{\log \log x})$$

with positive constants λ_{ij} for $i=1, \dots, k; j=1, \dots, l_i$. (The sets P_{ij} with distinct i's need not be disjoint, and $P_{i1} \cup \dots \cup P_{il_i}$ may not contain all primes.)

For a positive integer n, we denote by $\omega_{ij}(n)$ the number of distinct prime factors of n belonging to the set P_{ij} .

Let E be a Jordan-measurable set, bounded or unbounded, in the Euclidean space R^{l_0} of l_0 dimensions. For sufficiently large integer N, let A(N; E) denote the number of representations of N as the sum of k positive integers: $N=n_1+\cdots+n_k$ such that the point $(x_{11},\cdots,x_{1l_1},\cdots,x_{kl_k})$ belongs to the set E, where

(1)
$$x_{ij} = \frac{\omega_{ij}(n_i) - \lambda_{ij} \log \log N}{\sqrt{\lambda_{ij} \log \log N}}$$

for $i=1, \dots, k; j=1, \dots, l_i$. Then, as $N \rightarrow \infty$, we have

(2)
$$A(N; E) \sim \frac{N^{k-1}}{(k-1)!} (2\pi)^{-(l_0/2)} \int_E \exp\left(-\frac{1}{2} \sum_{i=1}^k \sum_{j=1}^{l_i} x_{ij}^2\right) dx_{11} \cdots dx_{kl_k}$$

Theorem 2. Let the polynomials $f_{ij}(\xi)$ $(i=1, \dots, k; j=1, \dots, l_i)$ of positive degree be subject to the following conditions:

(C₁) Each $f_{ij}(\xi)$ has rational integral coefficients, the leading coefficient being positive;

- (C₂) Each $f_{ij}(\xi)$ is irreducible;
- (C₃) For each $i, f_{ij}(\xi)$ $(j=1, \dots, l_i)$ are relatively prime in pairs. $\omega(n)$ will denote, for a positive integer n, the number of all distinct prime factors of n.

Let E be a Jordan-measurable set, bounded or unbounded, in the Euclidean space R^{l_0} of l_0 dimensions. For sufficiently large positive integer N, let A(N; E) denote the number of representations of N as the sum of k positive integers: $N=n_1+\cdots+n_k$ such that $f_{ij}(n_i)>0$ and the point $(x_{11}, \dots, x_{l_1}, \dots, x_{kl_k})$ belongs to the set E, where

(3)
$$x_{ij} = \frac{\omega\{f_{ij}(n_i)\} - \log\log N}{\sqrt{\log\log N}}$$

for $i=1, \dots, k$; $j=1, \dots, l_i$. Then, as $N \to \infty$, we have again the same formula as (2).

We could restate this theorem on removing the condition (C_2) , but then the enunciation would become more complicated. We could also state a theorem which would contain Theorems 1 and 2 as special cases.

The statement of the Theorem 1 remains true, when we replace $\omega_{ij}(n_i)$ in (1) by $\Omega_{ij}(n_i)$, the number of prime factors of n_i belonging to the set P_{ij} , multiple factors being counted multiply, or when we replace $\omega_{ij}(n_i)$ by $\log \tau_{ij}(n_i)/\log 2$, where $\tau_{ij}(n_i)$ stands for the number of positive divisors of n_i which are composed only of primes belonging to the set P_{ij} .

Also, the statement of the Theorem 2 remains true, when we replace $\omega\{f_{ij}(n_i)\}$ in (3) by $\Omega\{f_{ij}(n_i)\}$, the number of all prime factors of $f_{ij}(n_i)$, multiple factors being counted multiply, or when we replace $\omega\{f_{ij}(n_i)\}$ by $\log \tau\{f_{ij}(n_i)\}/\log 2$, where $\tau\{f_{ij}(n_i)\}$ stands for the number of all positive divisors of $f_{ij}(n_i)$.

We mention now some special cases of Theorems 1 and 2 which might be of interest.

Theorem 3. Let $\alpha_i < \beta_i$ ($i=1, \dots, k$). For sufficiently large N, let $A(N) = A(N; \alpha_1, \beta_1, \dots, \alpha_k, \beta_k)$ denote the number of representations of N as the sum of k positive integers: $N = n_1 + \dots + n_k$ such that the inequalities

(4) $\log \log N + \alpha_i \sqrt{\log \log N} < \omega(n_i) < \log \log N + \beta_i \sqrt{\log \log N}$ hold for $i=1, \dots, k$ simultaneously. Then, as $N \to \infty$, we have

$$A(N) \sim \frac{N^{k-1}}{(k-1)!} (2\pi)^{-k/2} \prod_{i=1}^k \int_{\alpha_i}^{\beta_i} e^{-x^2/2} dx.$$

Theorem 4. The statement of the Theorem 3 remains true when we replace $\omega(n_i)$ in (4) by $\omega(n_i+1)$.

The author expresses his thanks to Prof. S. Iyanaga for his kind advices.

References

- [1] P. Erdös and M. Kac: The Gaussian law of errors in the theory of additive number theoretic functions. Amer. J. Math., 62, 738-742 (1940).
- [2] M. Tanaka: On the number of prime factors of integers. Jap. J. Math., 25, 1-20 (1955).
- [3] —: On the number of prime factors of integers. II. J. Math. Soc. Japan, 9, 171-191 (1957).
- [4] —: On the number of prime factors of integers. III. Jap. J. Math., 27, 103-127 (1957).
- [5] —: On the number of prime factors of integers. IV. Jap. J. Math., 30, 55-83 (1960).