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In this paper we consider the invariant measure problem for
bounded amenable semigroups of positive L-operators. A necessary
and sufficient condition is given for the existence of finite equivalent
invariant measures for such semigroups.

Let (X,, m) be a probability space and let L(X)=L(X,, m),
l__<pc, be the usual Banach spaces. For a set A e , 1 is the in-
dicator function of A and L(A) denotes the Banach space of all L(X)-
unctions that vanish on X--A. Let F={T} be a semigroup of posi-
tive linear operators on L(X). /" is clled bounded if sup {11TII T e F}
c. Let B(F) denote the space of all bounded real-vlued functions

on F. A mean on B(F) is a linear functional on B(F) such that
inf {b(T) T e/’}=<(b)=<sup {b(T) T e

or all b e B(F). A mean on B(F) is left [right] invariant if

(rb) =(b) [(br) (b)]
for M1 b e B(F) and T e F, where rb and br are the functions on F defined
by rb(S) b(TS) and br(S) b(ST) or all S e/, respectively. An in-
variant mean is a left nd right invariant mean. If B(F) has left
[right] invariant men,/" is called left [right] amenable. If B(F) has
an invariant mean, then/ is called amenable. It is well-known that
commutative semigroups, solvable groups, locally finite groups, etc.,
are amenable (for these and more see Dy [1]).

Recently the uthor [4] hs proved that i F {T} is bounded left
amenable semigroup o positive linear operators on L(X), then the ol-
lowing two conditions are equivalent: (0) There exists a strictly posi-
tive function fo e L(X) with Tfo--fo for all T e F; (i) A e and re(A)

>0 imply inf I T1 din" T e F >O. In the present pper we shall S-
A

sume that/" is a bounded amenable semigroup o positive linear oper-
ators on L(X). Let us denote by IM the set of all inwriant means on
B(F) and define, for b e B(F),

M(b)--sup {(b) e IM}.
Then we have the ollowing

Theorem. Let F={T} be a bounded amenable semigroup of posi-

tire linear operators on L(X). Then the following two conditions are
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equivalent"
(0) There exists a strictly positive function f e L(X) with Tfo=f

for all T e

(ii) A e and m(A)O imply M( T1 dm0.
\JA /

For the proof of the Theorem we need the ollowing decomposi-
tion similar to Sucheston’s [5].

Lemma. 1" decomposes the space X into two sets Y and Z such
that

( i ) if f e L(Z) then Tf e L(Z) for all T e F and inf{ll
TeF}--O,

(ii) there exists a nonnegative function e e L(Y) with eO on Y
and T*e--e for all T e F, where T* denotes the adjoint of T.

Proof. it is easy to see that there exists a nonnegative unction
e e L(X), with T*e=e or all T e F, such that O<=u e L(X) and T*u
----u or all T e/" imply supp usupp e. Let Y=supp e and Z--X--Y,
and let 0 <= f e L(Z). Then, since (Tf, e} (f T*e} (f e}--O,
Tf e L(Z) or all T e F. In order to prove that inf {]1Tf]]" T e F}=O,
let e IM and define a positive linear functional F on L(X) by the re-
lation"

(g)----( Tg dm) (g e L(X)).

Since the dual space of L(X) is the space L(X), there exists a non-
negative unction u e L(X) such that

(g)= ug dm

or all g e LI(X). We now show that T*u--u or all T e F. To see
this, fix S e/ arbitrarily. Then for any g e L(X) we have (g, S*u

(Sg, u} (Sg) ( T(Sg)dm) ( Tg dm) g, u}, where the

ourth equality ollows rom the act that e IM. Hence S*u-u.

Therefore supp usupp e=Y and ([ Tf dm)----.[fu dm--O because

supp fZ. This completes the proof o the Lemma.
Proof of the Theorem. (0) implies (ii)" Obvious rom Corollary 1

of the author [4].
(ii) implies (0)" For T e/" and f e L(Y), define T’f--(Tf)l. By

the Lemma, T’S’=(TS)’ or all T,S e F and T’*e--e for all
Let A be a measurable subset of Y with re(A)0. Since T’*I----T*I,
we have

M( T’(l)dm) M(; T1 din)> O.

Hence it follows from Proposition 1 of [4] that
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for every A e with A Y and re(A) O.
Let e IM and define a positive linear functional on L(X) by the

relation"

(u)=( u(T1)dm) (u e L(X)).

If T** denotes the adjoint of T*, then for any u e L(X) and S e/ we
have

S**(u) (S*u)=((S*u)T1 din)
( u(ST1)dm)--( u(T1)dm)--(u).

It ollows that S*’2=2. Hence i / denotes the maximal (countably
additive) measure satisfying 0=</2 (c. Neveu [3], Lemma 1), then
S**p<=t. Let h--d//dm. It follows that Sh<=h. But, since
(g--S**/)(e)--p(e)--p(S*e)=O and e>0 on Y, we have Sh=h on Y.
Moreover it ollows rom (1) that h0 on Y. Therefore if/0 denotes
the positive linear functional on L(X) defined by the relation"

lo(U)--( u(Th)dm) (u e L(X)),

then/0 is a countably additive measure, and if we let fo=d/o/dm then
Tfo--fo for all T e F and f00 on Y. Let F=X--suppfo. To com-
plete the prooi o the Theorem it suffices to show that m(F)=0. To
do this, we note that if f e L(X--F) then Tf e L(X--F) or all T e F.
This is an easy consequence of the act that Tfo-fo or all T e F. It
now ollows that TI--T1 on F or all T e/. Since FZ, the Lemma
implies that

in {ll TI I1" T e F}=O.
Hence or any ’ e IM we have

and re(F)=0 by condition (ii). The proo is complete.
In conclusion we note that the identification of M defined on B(F)

is studied by Granirer [2] in some detail.
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