No. 6]

73. Group Rings of Metacyclic p-Groups

By Shigeo KOSHITANI

Department of Mathematics, Tokyo University of Education

(Communicated by Kenjiro SHODA, M.J.A., June 8, 1976)

Let K be a field with characteristic p>0, P a finite p-group and KP a group ring of P over K. Recently W. Müller [6] proved that every left ideal of KP is generated by at most 2 elements if p=2 and P is either a dihedral group, a semi-dihedral group or a generalized quaternion group of order 2^{n+1} . These groups are metacyclic 2-groups. So in this paper we shall generalize the above result as follows: If P is a metacyclic p-group containing a cyclic normal subgroup Q and with a cyclic factor group P/Q, then every left (right) ideal of KP is generated by at most |P/Q| elements. Further we shall show that there exists a metacyclic p-group P such that KP has a left (right) ideal whose minimal generators consist of |P/Q| elements. By using our technique if P is a semi-direct product of Q by P/Q it is proved a relation among the nilpotency indices of the radicals of KP, KQ and K(P/Q) which is similar in the case of a direct product of groups.

Let P be a metacyclic p-group containing a cyclic normal subgroup Q = [b] of order p^n $(n \ge 1)$ and with a cyclic factor group P/Q = [aQ] of order p^m (cf. [1, §47]). Then there is an integer r such that $aba^{-1} = b^r$. Since $a^{p^m} \in Q$, $r^{p^m} \equiv 1 \pmod{p^n}$. Hence

(*) $ba^{i}=a^{i}b^{r^{p^{m-i}}}, \text{ for } i=0, \cdots, p^{m}-1.$

We may put $a^{p^m} = b^{p^k}$, $(0 \le k \le n)$. Put B = KP, x = a - 1, y = b - 1 in Band $[s, t] = x^{p^{m-1-s}}y^{p^{n-1-t}}$, for $s = 0, \dots, p^m - 1$; $t = 0, \dots, p^n - 1$. Then $C = \{[s, t] | 0 \le s \le p^m - 1, 0 \le t \le p^n - 1\}$ forms a K-basis of B. Next we make C a totally ordered set by introducing in the following way: [s, t] < [s', t'] if and only if t < t', or t = t' and s < s'. Since each $u \in B \setminus \{0\}$ can be expressed uniquely in the form $u = \sum_{i=1}^{d} k_{iu}c_{iu}$, where $k_{iu} \in K \setminus \{0\}$, $c_{iu} \in C$, for $i = 1, \dots, d$ and $c_{iu} < c_{2u} < \dots < c_{du}$, we can define a map $h: B \setminus \{0\} \rightarrow C$ such that $h(u) = c_{du}$. Put $\binom{i}{j} = 0$ if i < j or j < 0.

At first we shall prove the following

Lemma. (a) x[s,t] = [s-1,t], for $s=1, \dots, p^m-1$; $t=0, \dots, p^n-1$. (b) x[0,t]=0, for $t=0, \dots, p^k-1$. $x[0,t] = [p^m-1, t-p^k]$, for $t=p^k$, p^k+1, \dots, p^n-1 , if k < n.

(c) $y[p^m-1, t] = [p^m-1, t-1], \text{ for } t=1, \dots, p^n-1, y[p^m-1, 0] = 0.$

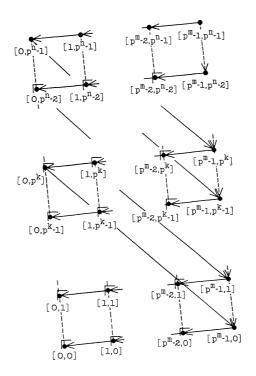
(d) $h(y[s, t]) = [s, t-1], \text{ for } s=0, \dots, p^m-1; t=1, \dots, p^n-1.$ $y[s, 0]=0, \text{ for } s=0, \dots, p^m-1.$ S. KOSHITANI

[Vol. 52,

Proof. (a), (b) and (c) are clear. By (*), for
$$s=0, \dots, p^m-1$$
,
 $yx^s = \sum_{i=0}^{s} \binom{s}{i} (-1)^{s-i} (ba^i - a^i) = \sum_{i=0}^{s} \binom{s}{i} (-1)^{s-i} (a^i b^{r^{p^m-i}} - a^i)$
 $= \sum_{j=0}^{s} \sum_{v=1}^{r^{p^m}} \left\{ \sum_{i=0}^{s} (-1)^{s-i} \binom{s}{i} \binom{i}{j} \binom{r^{p^{m-i}}}{v} \right\} x^j y^v = x^s y + \sum_{j=0}^{s} \sum_{v=2}^{r^{p^m}} a_{jv} x^j y^v,$

where a_{jv} are elements of K.

We shall show the formulas in Lemma as diagrams,



where the diagram $u \rightarrow v$ means xu = v, the diagram $u \rightarrow v$ means yu = vand the diagram $u \rightarrow v$ means h(yu) = v.

Let us put $h(U) = \max \{h(u) | u \in U, u \neq 0\}$ for each left ideal $U \neq 0$ of *B*. Then we have the main theorem,

Theorem. Let K be a field with characteristic p>0, and P a metacyclic p-group containing a cyclic normal subgroup Q and with a cyclic factor group P/Q. Then every left ideal of KP as well as every right ideal of KP is generated by at most |P/Q| elements.

In fact for a left ideal $U \neq 0$ of KP such that h(U) = [s, t] U is generated by at most $p^m - s$ elements.

Proof. We shall prove by induction on $s'=p^m-s$. If s'=1, $U=B[p^m-1,t]$ by Lemma. Assume that Theorem is proved for $1, \dots, s'-1$. Since h(U)=[s,t] there is $u_1 \in U$ such that $h(u_1)=[s,t]$. Put

 $L = \sum_{i=0}^{s} \sum_{j=0}^{t} Kx^{i}y^{j}u_{1} + \sum_{v=s+1}^{p^{m-1}} \sum_{w=0}^{t-1} K[v, w].$

By Lemma $[i, j] \in L$ for $i=0, \dots, s$ and $j=0, \dots, t$. Hence $U \subseteq L$. So each $u \in U$ can be expressed uniquely in the form

 $u = \sum_{i=0}^{s} \sum_{j=0}^{t} c_{ij}^{(u)} x^{i} y^{j} u_{1} + \sum_{v=s+1}^{p^{m-1}} \sum_{w=0}^{t-1} d_{vw}^{(u)}[v, w],$ where $c_{ij}^{(u)}$, $d_{vw}^{(u)}$ are elements of K. Put $D_{v} = \{d_{vw}^{(u)} | u \in U, w = 0, \dots, t-1\}$ for $v = s+1, s+2, \dots, p^{m}-1$. If $D_{v} = 0$ for all $v, U = Bu_{1}$. Assume that $D_{v} \neq 0$ for some v. Let W be a left ideal of B generated by a set

 $\{\sum_{v=s+1}^{p^{m-1}}\sum_{w=0}^{t-1}d_{vw}^{(u)}[v,w] | u \in U\}.$

Hence $U=Bu_1+W$. Since $D_v \neq 0$ for some v, by Lemma, $h(W)=[s+1,*], [s+2,*], \cdots$, or $[p^m-1,*]$. From the hypothesis of induction W is generated by at most s'-1 elements. This proves Theorem.

Remark 1. There exists a metacyclic *p*-group *P* such that *KP* has a left ideal *U* whose minimal generators consist of $p^m - s$ elements, where *s* is an integer such that h(U) = [s, t].

In case $m \leq k$ (hence $m \leq n$) and y[s', t'] = [s', t'-1] for $s' = 0, \dots, p^m - 1$; $t' = 0, \dots, p^m - 1$, for each s $(0 \leq s \leq p^m - 1)$ a left ideal

 $U=B[s, p^m-1-s]+B[s+1, p^m-2-s]+\cdots+B[p^m-1, 0]$ is never generated by fewer than p^m-s-1 elements.

The above case happens if $m=1 \le k \le n=z+1$ and $r=p^z+1$, where z is a positive integer, or if $m \le k$ and P is abelian.

Remark 2. Let P be a metacyclic p-group and denote by J(KP) the radical of KP. Then J(KP) = KPx + KPy = xKP + yKP.

Remark 3 (cf. [3, Théorème 6], [5, Theorem]). Let P be a semidirect product of [b] of order p^n by [a] of order p^m . Denote by t(G) the nilpotency index of J(KG) for any finite group G. Put $J(KP)^0 = KP$ and $C_i = \{x^s y^t | 0 \le s \le p^m - 1, 0 \le t \le p^n - 1, s + t \ge i\}$ for $i = 0, \dots, p^m + p^n - 2$. Then we have,

(a) C_i forms a K-basis of $J(KP)^i$, for $i=0, \dots, p^m+p^n-2$.

(b) t(P) = t([a]) + t([b]) - 1.

By [4, Theorem 2, Theorem 7] and Theorem, we obtain,

Corollary (cf. [2, IV § 4]). Let K be an algebraically closed field with characteristic p > 0, G a finite p-nilpotent group with a metacyclic p-Sylow subgroup, $\{B_1, \dots, B_m\}$ the set of all blocks of KG, and P_i a pdefect group of B_i such that P_i contains a cyclic normal subgroup Q_i and with a cyclic factor group P_i/Q_i for each i. Then every two-sided ideal of KG is generated by at most $\max\{|P_i/Q_i||i=1,\dots,m\}$ elements as a left ideal and as a right ideal.

Remark 4. Let K be an algebraically closed field with characteristic p > 0, G a finite group with a p-Sylow subgroup P and H the largest normal subgroup of G such that $p \nmid |H|$. If HP is normal in G and P is metacyclic, by [4, § 3] and Remark 2, J(KG) is generated by at most 2 elements as a left ideal and as a right ideal.

S. KOSHITANI

References

- C. W. Curtis and I. Reiner: Representation Theory of Finite Groups and Associative Algebras. Interscience, New York (1962).
- [2] B. Huppert: Endliche Gruppen. I. Springer (1967).
- [3] C. Loncour: Radical d'une algèbre d'un produit direct de groupes finis. Bull. Soc. Math. Belg., 23, 423-435 (1971).
- [4] K. Morita: On group rings over a modular field which possess radicals expressible as principal ideals. Sci. Rep. of Tokyo Bunrika Daigaku, A4, 177-194 (1951).
- [5] K. Motose: On C. Loncour's results. Proc. Japan Acad., 50, 570-571 (1974).
- [6] W. Müller: Gruppenalgebren über nichtzyklischen p-Gruppen. I, II. J. Reine Angew. Math., 266, 10-48 (1974); 267, 1-19 (1974).