97. On Kronecker Limit Formula for Real Quadratic Fields

By Takuro Shintani

(Communicated by Kunihiko Kodaira, M. J. A., Sept. 13, 1976)

1. Let F be the real quadratic field with discriminant d embedded in the real field \boldsymbol{R}. Let χ be a primitive character of the group of the ideal class group modulo \dagger of F. Assume that for a principal integral ideal (μ) of $F, \chi((\mu))$ is given by the following formula (1).
(1)

$$
\chi((\mu))=\operatorname{sgn}(\mu) \chi_{0}(\mu)
$$

where χ_{0} is a character of the group of residue classes modulo f. Let $L_{F}(s, \chi)$ be the Hecke L-function of F associated with the character χ. In this note, we present a formula for the value $L_{F}(1, \chi)$ which seems to be new and suggestive. For previously known relevant results, we refer to E. Hecke [1], [2], G. Herglotz [3], C. Meyer [4], C. L. Siegel [6] and D. Zagier [7].
2. For a pair of positive numbers $\alpha=\left(a_{1}, a_{2}\right)$, set

$$
\begin{aligned}
c_{1}(a)= & \frac{1}{a_{1}} \sum_{n=1}^{\infty}\left\{\psi\left(\frac{n a_{2}}{a_{1}}\right)-\log \left(\frac{n a_{2}}{a_{1}}\right)+\frac{a_{1}}{2 n a_{2}}\right\} \\
& +\frac{1}{2}\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}\right) \log a_{1}-\frac{1}{2 a_{1}}(\gamma-\log 2 \pi) \\
& +\frac{a_{1}-a_{2}}{2 a_{1} a_{2}} \log \frac{a_{2}}{a_{1}}-\frac{\gamma}{2}\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}\right)
\end{aligned}
$$

and set

$$
c_{2}(a)=\frac{1}{2 a_{1}^{2}} \sum_{n=1}^{\infty}\left\{\psi^{\prime}\left(\frac{n a_{2}}{a_{1}}\right)-\frac{a_{1}}{n a_{2}}\right\}+\frac{\pi^{2}}{12 a_{1}^{2}}-\frac{1}{2 a_{1} a_{2}} \log a_{2}+\frac{\gamma}{2 a_{1} a_{2}}
$$

where γ is the Euler constant and ψ is the logarithmic derivative of the gamma function.

Denote by $F(\alpha, z)$ an entire function of z given by the following:

$$
\begin{aligned}
F(a, z)= & z \exp \left\{-c_{1}(a) z-c_{2}(a) z^{2}\right\} \Pi^{\prime}\left(1+\frac{z}{n a_{1}+m a_{2}}\right) \\
& \times \exp \left\{-\frac{z}{n a_{1}+m a_{2}}+\frac{z^{2}}{2\left(n a_{1}+m a_{2}\right)}\right\}
\end{aligned}
$$

where the product is over all pairs (n, m) of non-negative integers which are not simultaneously equal to zero.

We note that the function $F(a, z)^{-1}$ is the double gamma function introduced and studied by Barnes in [8].

Let $\varepsilon>1$ be the generator of the group of totally positive units of F. Choose a complete set of representatives $\mathfrak{a}_{1}, \mathfrak{a}_{2}, \ldots, \mathfrak{a}_{h_{0}}$ of the group of narrow ideal classes of F. For each $k\left(1 \leq k \leq h_{0}\right)$ set

$$
R_{k}(\mathrm{f})=\left\{z=x+\varepsilon y \in\left(\mathfrak{a}_{k}\right)^{-1} ; \quad x, y \in \boldsymbol{Q}, 0<x \leq 1,0 \leq y<1\right\} .
$$

It is easy to see that $R_{k}(\mathfrak{f})$ is a finite subset of $\left(\mathfrak{a}_{k} \mathfrak{f}\right)^{-1}$. For each $z \in R_{k}(\mathfrak{f})$, set

$$
\chi_{k}(z)=\chi\left(\mathfrak{a}_{k} f(z)\right) .
$$

The L-function $L_{F}(s, \chi)$ is an entire function of s which satisfies the following functional equation (2).

$$
\begin{align*}
& A^{1-s} \Gamma\left(\frac{1-s}{2}\right) \Gamma\left(\frac{2-s}{2}\right) L_{F}(1-s, \chi) \tag{2}\\
& \quad=w(\chi) A^{s} \Gamma\left(\frac{s}{2}\right) \Gamma\left(\frac{s+1}{2}\right) L_{F}\left(s, \chi^{-1}\right)
\end{align*}
$$

where $A=\sqrt{d N(\mathrm{f})} / \pi(N(\mathrm{f})$ is the norm of f$)$, and $w(\chi)$ is a certain complex number of modulus 1 .

Theorem 1. Notations being as above, let χ be a primitive character of the group of ideal classes modulo f of F which is of the form (1), then

$$
w(\chi)^{-1} \frac{\sqrt{d N(f)}}{2 \pi} L_{F}(1, \chi)=-\sum_{k=1}^{n_{0}} \sum_{z \in R_{k}(\mathrm{f})} \chi_{k}^{-1}(z) \log \left\{F((1, \varepsilon), z) F\left(\left(1, \varepsilon^{\prime}\right), z^{\prime}\right)\right\}
$$

(ε^{\prime} and z^{\prime} are conjugates of ε and z repectively).
Let $K \subset R$ be a quadratic extension of F in which exactly one of two archimedean primes of F ramifies. Let \mathfrak{b} be the relative discriminant of K with respect to F and let χ be the character of the group of ideal classes modulo \mathfrak{b} of F which corresponds to K in class field theory. Assume that the fundamental unit η_{0} of F is the m-th power of a primitive unit η_{1} of $K(m \geq 1)$. Further take a unit η of K so that $\pm \eta_{1}$ and η generate the group of units of K. Denote by η^{σ} the conjugate of η with respect to F and denote by h_{F} (resp. h_{K}) the class number of F (resp. K). We may assume that $\eta>\left|\eta^{\sigma}\right|>0$.

Corollary to Theorem 1. Notation being as above,

$$
\left(\left|\eta^{\sigma}\right| / \eta^{h_{F}}=\prod_{k=1}^{h_{0}} \prod_{z \in R_{k}(\delta)}\left\{F((1, \varepsilon), z) F\left(\left(1, \varepsilon^{\prime}\right), z^{\prime}\right)\right\}^{m h_{F} z_{k}(z)}\right.
$$

3. The next two propositions are proved by straightforwards arguments involving only elementary theory of functions.

Proposition 1. The function $F(a, z)$ is an entire function of z of order 2 which is symmetric with respect to a_{1} and a_{2} and satisfies the following difference equations:

$$
\begin{aligned}
& F\left(a, z+a_{1}\right)=\frac{1}{\sqrt{2 \pi}} F(a, z) \Gamma\left(\frac{z}{a_{2}}\right) \exp \left\{\left(\frac{z}{a_{2}}-\frac{1}{2}\right) \log a_{2}\right\}, \\
& F\left(a, z+a_{2}\right)=\frac{1}{\sqrt{2 \pi}} F(a, z) \Gamma\left(\frac{z}{a_{1}}\right) \exp \left\{\left(\frac{z}{a_{2}}-\frac{1}{2}\right) \log a_{1}\right\} .
\end{aligned}
$$

For a positive number $\lambda<1$, we denote by $I_{\lambda}(+\infty)$ (resp. $\left.I_{\lambda}(1)\right)$ the integral path in the complex plane consisting of the linear segment $(+\infty, \lambda)$ (resp. ($1, \lambda$)), the counterclockwise circle of radius λ around
the origin and of the linear segment $(\lambda,+\infty)$ (resp. $(\lambda, 1)$).
Proposition 2. Notations being as obove, if a_{1} and a_{2} are linearly independent over the rational number field \boldsymbol{Q}, there exists a constant $C(a)$ which does not depend on z such that

$$
\begin{aligned}
& -\frac{1}{2 \pi i} \int_{I_{\lambda}(+\infty)} \frac{e^{\left(a_{2}+a_{2}-z\right) t}}{\left(e^{a_{1} t}-1\right)\left(e^{a_{2} t}-1\right)} \frac{\log t}{t} d t \\
& \quad=\log F(a, z)+\frac{(\gamma-\pi i)}{2 a_{1} a_{2}}\left\{z^{2}-\left(a_{1}+a_{2}\right) z\right\}+C(a) \\
& \quad\left(\operatorname{Re} z>0, \quad 0<\lambda<1, \quad \lambda<(2 \pi) / a_{1}, \quad \lambda<(2 \pi) / a_{2}\right) .
\end{aligned}
$$

For a pair of positive numbers $a=\left(a_{1}, a_{2}\right)$ and a pair of non-negative numbers $x=\left(x_{1}, x_{2}\right) \neq 0$, set

$$
\zeta(s, a, x)=\sum_{n, m=0}^{\infty} \prod_{k=1}^{2}\left\{x_{1}+m+\left(x_{2}+n\right) a_{k}\right\}^{-s}
$$

then the Dirichlet series $\zeta(s, a, x)$ is absolutely convergent if $\operatorname{Re} s>1$ and is extended to a meromorphic function in the whole complex plane.

Proposition 3. Notations being as above, we have

$$
\begin{aligned}
& \left.\left\{\frac{d}{d s} \zeta(s, a, x)\right\}_{s=0}=-\log \left\{F\left(1, a_{1}\right), x_{1}+x_{2} a_{1}\right) F\left(\left(1, a_{2}\right), x_{1}+x_{2} a_{2}\right)\right\} \\
& \quad+(2 \gamma-3 \pi i) \zeta(0, a, x)-\frac{\gamma-\pi i}{2} \sum_{k=1}^{2}\left\{\frac{\left(x_{1}+x_{2} a_{k}\right)^{2}}{a_{k}}-\left(1+\frac{1}{a_{k}}\right)\left(x_{1}+x_{2} a_{k}\right)\right\} \\
& \quad+\left\{\frac{1}{4} i \pi\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}\right)+\frac{a_{1}-a_{2}}{4 a_{1} a_{2}} \log \left(\frac{a_{2}}{a_{1}}\right)\right\} B_{2}\left(x_{1}\right)+\pi i B_{1}\left(x_{1}\right) B_{1}\left(x_{2}\right) \\
& \quad+\frac{\pi i}{4}\left(a_{1}+a_{2}\right) B_{2}\left(x_{2}\right)+C\left(\left(1, a_{1}\right)\right)+C\left(\left(1, a_{2}\right)\right),
\end{aligned}
$$

where B_{1} and B_{2} are, respectively, the first and the second Bernoulli polynomial and the constant $C\left(\left(1, a_{k}\right)\right)(k=1,2)$ is as in Proposition 2.

Proof. If $\operatorname{Re} s>1$, we have the following integral representation for $\zeta(s, a, x)$.

$$
\Gamma(s)^{2} \zeta(s, a, x)=\int_{0}^{\infty} \int_{0}^{\infty}\left(t_{1} t_{2}\right)^{s-1} g\left(t_{1}, t_{2}\right) d t_{1} d t_{2}
$$

where $g\left(t_{1}, t_{2}\right)=\frac{\exp \left\{\left(1-x_{1}\right)\left(t_{1}+t_{2}\right)+\left(1-x_{2}\right)\left(a_{1} t_{1}+a_{2} t_{2}\right)\right\}}{\left\{1-\exp \left(t_{1}+t_{2}\right)\right\}\left\{1-\exp \left(a_{1} t_{1}+a_{2} t_{2}\right)\right\}}$.
The integral in the right side of the above equality is equal to

$$
\int_{0}^{\infty} t^{2 s-1} \int_{0}^{1} u^{s-1} g(t, t u) d t d u+\int_{0}^{\infty} t^{2 s-1} \int_{0}^{1} u^{s-1} g(t u, t) d t d u
$$

Hence, for a sufficiently small positive number λ, we have

$$
\begin{align*}
& (1-\exp 4 \pi i s)(1-\exp 2 \pi i s) \Gamma(s)^{2} \zeta(s, a, x) \\
& =\int_{I_{\lambda}(+\infty)} t^{2 s-1} d t \int_{I_{\lambda}(1)} u^{s-1} g(t, t u) d u+\int_{I_{\lambda(+\infty)}} t^{2 s-1} d t \tag{3}\\
& \quad \times \int_{I_{\lambda}(1)} u^{s-1} g(t u, t) d u .
\end{align*}
$$

Proposition 3 now follows easily from (3) and Proposition 2.
4. It follows from the functional equation (2) that

$$
\begin{equation*}
w(\chi)^{-1} \frac{\sqrt{d N(f)}}{2 \pi} L_{F}(1, \chi)=\left\{\frac{d}{d s} L_{F}\left(s, \chi^{-1}\right)\right\}_{s=0} . \tag{4}
\end{equation*}
$$

On the other hand, it is easy to see that
(5)

$$
L_{F}(s, \chi)=\sum_{k=1}^{h_{0}} \sum_{z \in R_{k}(\mathrm{f})} \chi_{k}(z) N\left(\mathfrak{a}_{k} \mathfrak{f}\right)^{-s} \zeta\left(s,\left(\varepsilon, \varepsilon^{\prime}\right),(x, y)\right) \quad(z=x+\varepsilon y)
$$

Theorem 1 is now an immediate consequence of (4), (5) and Proposition 3. Details will appear elesewhere.

Remark. The method in the proof of Proposition 3 has been applied in [5] for the evaluation of zeta-functions of totally real algebraic number fields at non positive integers.

References

[1] E. Hecke: Über die Kroneckersche Grenzformel für reelle quadratische Körper und die Klassenzahl relative Abelscher Körper, Werke, 198-207.
[2] -: Bestimmung der Klassenzahl einer neuen Reihe von algebraischen Zahlkörpern, Werke, 290-312.
[3] G. Herglotz: Über die Kroneckersche Grenzformel für reelle quadratische Körper. I, II. Ber. d. Sachs. Akad. d. Wiss. zu Leipzig, 75, 3-14, 31-37 (1923).
[4] C. Meyer: Die Berechnung der Klassenzahl abelscher Körper über quadratischen Zahlkörpern. Berlin (1957).
[5] T. Shintani: On evaluation of zeta functions of totally real algebraic number fields at non positive integers (to appear in J. Fac. Sci. Univ. Tokyo).
[6] C. L. Siegel: Lectures on Advanced Analytic Number Theory. Bombay (1961).
[7] D. Zagier: A Kronecker Limit Formula for Real Quadratic Fields. Math. Ann., 213, 153-184 (1975).
[8] E. W. Barnes: The theory of the double gamma function. Philos. Trans. Roy. Soc. London (A), 196, 265-388 (1901).

