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9"#. Prime Closed Geodesics on Pinched Spheres*

By Sadaharu YOKOYAMA
Suzuka College of Technology, Suzuka Mie Japan

(Communicated by Kenjiro SHODA, M. I.A., Sept. 13, 1976)

In this article we generalize the notion of type number for an ab-
stract variation problem and count the number of prime closed geode-
sics on a pinched sphere (Theorem 3.2, 3.3).

The author is grateful to Professor Y. Shikata for his kind advices.
1. Definition 1.1. Let (X, 9; f) be a triple of a topological

space X, a continuous function on X such that 9>_ 0 and a continuous
function 9 on X such that 9_>0 and a continuous map f into itself.
The triple (X, 9;f) is a (abstract) variation problem (over a field k) if
X, 9, and f satisfies the following:

i) 9(f(x)) <_9(x) for any x e X.
ii) (f(x))=9(x) implies f(x)=x.
iii) the homomorphism f. induced by f on H.(X; k) is the iden-

tity.
A point x e X for which f(x)=x is said to be a critical point of

(X, 9; f) and the totality of the critical point is denoted by .x.
Definition 1.2. Let (X, 9;f) be a variation problem. A norm

[AI of A is defined by the following, for any compact set A in X

IA I=sup {im 9(f’(x))’xe A).
Then the triple (X, ;f) is said to have a norm if the norm above
satifies the following"

iv) for any compact set A and for any neighborhood U of -x f-(IAI), there is an integer N such that n>_N implies f"(A) U
U 9- ([0, [A

Definition 1.3. A variation problem (X, 9;f) is said to be dis-
crete if

i) the set (.VIg-(a)) is discrete for any real number a>_0, where
(*)’ is the derived se of (*).

ii) 9(’) is discrete in real number.
Definition 1.4. Let X be a opological space and 9 be a contin-

uous function on X. Then an n-th ype number T(x;X, 9) of x is
defined by he following:

T(x X, 9)=lim H(U, U- k)
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where {U} is a neighborhood system of x and U-={y e U: 0(y)(x)}.
Definition 1.5. A homology class a e H.(X k) is said to be sub-

ordinate to e H.(X; k) and is denoted by a-<, if there is a coho-
mology class $ e H(X; k) (m 1) such that a $.

Theorem in [6] is improved as follows.
Theorem 1.6. Let (X, f) be a discrete variation problem with

a norm over a locally connected space X, and if there is a sequence
{}=of homology class of X such that

i) a Ker ]." H.(X; k)H.(X, X; )
ii) aa, ,...,

then there exist critical points x, x, ..., x such that
iii) a<(x) (x2) ... (x)
iv) T()(x X, )O n(i)=dima

where ] is an inclusion map and X=(x e X" (x) a}.
Corollary 1.7. Let (X, Y,F,) be a fiber bundle over a locally

connected base space Y and a compact metric bundle space X, and
(X, ;f) be a discrete variation problem with a norm such that the
restriction of -(y) is constant for any y e Y. If there is a sequence
(a}= of homology class of Y such that

i) a e Ker ]." H.(Y k)H.(Y, Y k)

then there exist critical points x, x2, ., x e X snch that
iii) a(x) (x2) ... (x).
iv) T()((x) Y, .-)O

where ] is an inclusion map and Y=(u(x)" x e X}.
2. Denote by M a compact smooth riemannian manifold without

boundary and denote by A, B submanifolds of M.
Definition 2.1.
1) 9(M; A, B) consists of all piecewise-smooth curves a in M
which is parametrized by the real number t (0 g tg 1), proportionate
to arc length and a(0) e A, a(1) e B.
2) a metric d on 9(M;A, B) is defined by

where p is riemannian metric on M.
3) Finally a continuous function on 9(M;A, B) is defined by

L" a I(t)[ dt.

Theorem 2.2. Together with the canonical Morse deformation
f on 9(M A, B), the tr@le (9(M A, B), L f) turns out to be a
normed variation problem such that

i) for any (x, y) e A xB the restriction of f on 9(M;x,y)
defines a deformation on 9(M x, y), where 9(M x, y)=9(M {x}, {y}).



346 S. YOKOYAMA [Vol. 52,

ii) for any closed set F in 9(M A, B) satisfying F N .s=O there
is a real number 0, such that

"if e F, then L()--L(f(fl)) > 3".
iii) all critical points are geodesics.
Proof. The proof is similar to that in [5].
Proposition 2.3. Let be a geodesic of the variation problem

(9(M A, B), L f) of 2.2. If (0) and a(1) are not conjugate along, then there exist a neighborhood U of in 9(M; A, B) and a neigh-
borhood V of (a(0), a(1)) in A B satisfying the following:

) there is a unique geodesic n(x, y) in U such that n(x, y)(0)------x,
n(x, y)(1)--y for any (x, y) e V, depending continuously on (x, y) e V.

Let (9(M A, B), L f) be the variation problem and I’ be a con-
tinuous unction on A B, then define a continuous unction I on
9(M A, B) by the following:

I: flI’(fl(O), fl(1)),
then (tg(M A, B), L+ I f) become variation problem. Let a be a
geodesic of the variation problem (9(M A, B), L f), and assume a(0)
and a(1) are not conjugate along a, a function i on the neighborhood
V in A B o 2.3 given by

i" (x, y)L(n(x, y)) + I’(x, y)
is continuous.

Theorem 2.4. Let be a geodesic of the variation problem
([2(M A, B), L+I f), and I’ be a continuous function on A B. As-
sume (0) and a(1) are not conjugate along , then

T.(a; tg(M A,B),L+I)T.((a(O),a(1)); V,i)
(R)T.(a 9(M; a(0), a(1)) L)

Outline of proof. For (x, y)e V, fle U the join by geodesics of x
and y to (0) and/(1), respectively, gives a continuous map g((x, y), fl)
o U V into t(M;A, B), and set

U0= {fle U: (L+ I)(fl) < (L+ I)(a)}
v0= {(x, y) e v. i(x, y)<i((0), ())}
W={U ( 2(M a(0), (1))}
W0-- {fl e W: L(fl) < L(a)}
U { e U0: (fl(0), fl(1)) e V0 or g((a(0), a(1)), fl) e W0}
Y {((x, y), ) e V W): (x, v) e V0 or g((x, y), ) e U0}.

We compute the homology of the space (U, U0) in terms of the homology
of the space (V, V0), (W, W0). Starting with spaces U, Y, we reduce
the computation o homology H.(U, U0) and lim__ H.(V, V0)(R)lim H.
(W, Wo) into limH.(U, U) and limH.(VW, Y) respectively, by

successive approximation.
:}. Let M be a compact smooth m+ 1 dimensional riemannian

manifold without boundary, and c be a closed geodesic on M and c also
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be a closed geodesic that satisfies c(t)=c(nt) where c(0)=c(1).
Let z/-- {(x, x) e M M}, and let elements in 9(M, z/) be parametrized

by S=[O, 1]/{0, 1}. Then 0(2) act on 9(M, zl), and set II(M)=9(Mzl)
/o(2).

Set
T.(c)-- T.(c II(M), L) T.(c,)-- T.(c 9(M; c(0), c(1)), L)
T(c)=inf {s" T,(c)0} T(c,)--in {s" T(c,)0}
T(c)--sup {s" T(c)=/:0} T(c,)=sup {s" T(c,) :/= 0}.

Theorem :. 1.
i) T(c’) T(c’,)<_2m,
ii) T(c’) >_ (s-- 1) T(c,),

iii) (T(c)-2m)/s<_lim T(c)/n<_lim (c)/n<_(T(c’)+2m)/s.
Proof. This theorem is proved esily using 2.4.
The following theorems can be deduced from the knowledge of the

homology group of II(M) using 1.7, 3.1.
Theorem :.2. Let M be a riemannian manifold which is

homeomorphic to S (m2). If the sectional curvature K of M
satisfies 1/4K_I, then there is a subset of II(M) satisfying following;

i) F is the set of the closed geodesics of the same length.
ii) the derived set F’ of F is not discrete.
Theorem :.:}. Let M2 be a riemannian manifold, homeomorphic

to S and let K satisfy OlK_l. If the number of prime closed
geodesics on M is greater than p, then the following inequality holds"

(2/(2k--1)/4k--t))(]g(2k)--t)/p[)<_l t" nonnegative integer,
where ].[ denotes the smallest integer exceeds * and g(m)=2m--s(m)

1 with s(m) m 2, 0 <_ s(m) <_ 2.
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