90. Paley-Wiener Type Theorem for the Heisenberg Groups

By Shoichi Ando
Department of Mathematics, Kyoto University
(Communicated by Kôsaku Yosida, M. J. A., Sept. 13, 1976)

1. The simply connected Heisenberg group G of n-th order consists of elements $g(x, y, z)\left(x, y \in R^{n}, z \in R\right)$ with multiplication law $g(a, b, c) \cdot g(x, y, z)=g(x+a, y+b, z+c+\langle a, y\rangle)$, where $\langle a, y\rangle=\sum_{i=1}^{n} a_{i} y_{i}$.

In this paper we state a Paley-Wiener type theorem for the group G by the same method as in [3]. Let N and A be the subgroups of elements $n=g(0, b, c)$ and $a=g(a, 0,0)$, respectively. Then $G=N \cdot A$ is a semidirect product. On the set \hat{N} of not necessarily unitary characters of N co-adjoint action of A is defined by $a^{*} \cdot \chi(n)=\chi\left(a n a^{-1}\right),(a \in A, \chi \in N)$. Every irreducible unitary representation of infinite dimension is realized up to equivalence in $L^{2}\left(R^{n}, d x\right)$ cf. [1], [2]: for $\lambda \neq 0$,

$$
\begin{equation*}
T_{\theta}^{\chi} \varphi(g)=e^{\langle\mu, b\rangle} e^{\lambda(\langle b, x\rangle+c)} \varphi(x+a), \text { for } g=g(a, b, c) \tag{1}
\end{equation*}
$$

which is induced from a unitary character $\chi=(\mu, \lambda)$ of N such that $\chi(g(0, b, c))=\exp (\langle\mu, b\rangle+\lambda c),\left(\mu \in \sqrt{-1} \cdot R^{n}, \lambda \in \sqrt{-1} \cdot R\right)$. Let \mathcal{C} be the space of functions φ on R^{n} with finite seminorms $\|\cdot\|_{t}$ for any $t \in R^{n}$, where

$$
\|\varphi\|_{t}=\left(\int_{R^{n}} \exp \langle t,| x| \rangle \cdot|\varphi(x)|^{2} d x\right)^{1 / 2}, \quad\left(|x|=\left(\left|x_{i}\right|_{i}\right)\right.
$$

In the space $\left(\mathcal{C},\|\cdot\|_{t}\right)$ the formula (1) gives a representation \mathscr{D}_{x}. Especially we have $\left\|T_{g}^{x} \cdot \varphi\right\|_{t} \leqq C^{x}(t, g)\|\varphi\|_{r}^{x}(t, g),(\varphi \in \mathcal{C})$, with constants $C^{x}(t, g)$ and $\tau^{x}(t, g)$ independent of φ. From easy argument of the existence of invariant bilinear forms follows

Proposition. (i) A continuous linear operator commuting with all $T_{g}^{x}(g \in G)$ is a scalar multiple of the identity. (ii) Representation \mathscr{D}_{x} extends to a unitary one if and only if so is χ (cf. [4]).
2. Let $Q_{\alpha, \beta, \gamma}$ be a compact set in G of the form

$$
\left\{g(x, y, z) ;\left|x_{i}\right| \leqq \alpha_{i},\left|y_{j}\right| \leqq \beta_{j},|z| \leqq \gamma, i, j=1 \cdots n\right\}
$$

We assign auxiliary functions to $Q=Q_{\alpha, \beta, r}, \tau^{\chi}(t ; Q)=t+2 \beta|R e \lambda|$, and $C^{x}(t, Q)=\exp \left[\langle\beta| R, e \mu| \rangle+\gamma|R e \lambda|+2^{-1}\langle | \tau^{x}(t ; Q)|, \alpha\rangle\right]$.

Lemma. If the support of a function $f \in L^{1}(G)$ is contained in the compact set Q, the Fourier transform of $f: T_{f}^{x}=\int_{G} f(g) T_{g}^{x} d g$, converges strongly in \mathcal{C} for every $\chi \in \hat{N}$ and it holds

$$
\begin{equation*}
\left\|T_{f}^{x} \varphi\right\|_{t} \leqq C^{x}(t ; Q)\|f\|_{L^{1}}\|\varphi\|_{r^{x}(t ; Q)} \quad\left(t \in R^{n}\right) \tag{2}
\end{equation*}
$$

The Plancherel formula takes the following form:

$$
\|f\|_{L^{2}}^{2}=(2 \pi)^{-2} \int_{R}\left\|T_{f}^{(0, \sqrt{-1} \lambda)}\right\|_{H-S}^{2} \lambda d \lambda,
$$

$\left(\|\cdot\|_{H-S} ;\right.$ Hilbert-Schmidt norm).
Let $C_{0}^{\infty}(Q)$ be the space of C^{∞}-functions with support contained in Q and $\mathcal{B}(Q)$ be the set of operator-valued functions T^{x} of χ having the properties $\left(1^{\circ}\right)\left(2^{\circ}\right)$ and $\left(3^{\circ}\right)$ mentioned below. $\mathcal{B}(Q)$ becomes a Fréchet space with the canonical topology cf. [3].
$\left(1^{\circ}\right)$ For any polynomials $P_{k}(k=1,2)$ of $\partial / \partial x_{i}$ and $(\mu+\lambda x)_{j}$ there exists a constant $C\left(P_{1}, P_{2}\right)$ independent of t, χ and φ such that
$\left\|P_{1} \cdot T^{x} \cdot P_{2} \cdot \varphi\right\|_{t} \leqq C\left(P_{1}, P_{2}\right) C^{x}(t ; Q)\|\varphi\|_{\tau} x_{(t ; Q)}, \quad$ for every $t \in R^{n}$.
(2 ${ }^{\circ}$) Equivalence relation: $T_{a} \cdot T^{\chi} \cdot T_{a}^{-1}=T^{a * \cdot x},\left(a \in A, T_{a} ;\right.$ translation by a).

Now let \mathcal{C}_{∞} be the space of $\psi \in \mathcal{C}$ whose distribution derivatives $P(\partial / \partial x) \cdot \psi$ all belong to \mathcal{C} for any polynomial P. We take as its system of seminorms $\|\psi\|_{t, P}=\|P(\partial / \partial x) \psi\|_{t}$.
(3°) Weak analyticity: for any $\varphi \in \mathcal{C}$ and $F \in \mathcal{C}_{\infty}^{\prime}$; the dual space of $\mathcal{C}_{\infty},\left\langle F, P_{1} \cdot T^{\star} P_{2} \varphi\right\rangle$ is an entire function of $\chi \in \hat{N} \cong C^{n} \times C$, for such P_{1} and P_{2} as in $\left(1^{\circ}\right)$.

Paley.Wiener type theorem. Fourier transformation $f \mapsto T_{f}^{x}$ is a topological isomorphism of $C_{0}^{\infty}\left(Q_{\alpha, \beta, r}\right)$ onto $\mathscr{B}\left(Q_{\alpha, \beta, r}\right)$.
3. We sketch only the proof of surjectivity. As showed in [3], the operator T^{x} has an integral kernel $H^{x}(x, a): T^{x} \varphi(x)=\int_{R^{n}} H^{x}(x, a) \varphi(a) d a$ $(\varphi \in \mathcal{C}) . \quad H^{x}(x, a)$ is a C^{∞}-function of a for fixed x and χ and its support is contained in $\left\{a ; \max .\left(\left|x_{i}\right|-\left|\alpha_{i}\right|, 0\right) \leqq\left|\alpha_{i}\right| \leqq\left|x_{i}\right|+\alpha_{i}, i=1 \cdots n\right\}$. Let $\chi_{\left[-\alpha, a_{0}\right]}$ be the indicator of a set $\left\{x ;-\alpha_{i} \leqq x_{i} \leqq\left(a_{0}\right)_{i}, i=1 \cdots n\right\}$. We can show for differential operator $D_{a}, D_{a} \cdot H^{\chi}\left(0, a_{0}\right)=\left(T^{\chi} \cdot D_{a}^{*} \cdot \chi_{\left[-\alpha, \alpha_{0}\right]}\right)(0)$, where D_{a}^{*} is the adjoint operator of $\left(\prod_{i=1}^{n} \partial / \partial a_{i}\right) \cdot D_{a}$. By the property $\left(1^{\circ}\right)$ we can extend $T^{x} \cdot D_{a}^{*}$ defined on \mathcal{C}_{∞} to the whole space \mathcal{C}. Put $\psi=T^{x} \cdot D_{a}^{*} \cdot \chi_{\left[-\alpha, a_{0}\right]}$, then $\psi \in \mathcal{C}_{\infty}$ and its support lies in $\left\{x ;\left|x_{i}\right| \leqq 2 \alpha_{i}, i=1 \cdots n\right\}$. We estimate $\psi(0)$ as follows. First for every $s=\left(s_{j}\right) \in R^{n}$

$$
\begin{aligned}
\psi(0) & =\int_{-2 \alpha_{1}}^{0} \cdots \int_{-2 \alpha_{n}}^{0}\left(\prod_{i=1}^{n} \partial / \partial x_{i}\right)\left(e^{\langle s, x\rangle} \psi(x)\right) d x \\
& =\int_{-2 \alpha_{1}}^{0} \cdots \int_{-2 \alpha_{n}}^{0} e^{s, x\rangle} \prod_{i=1}^{n}\left(\partial / \partial x_{i}+s_{i}\right) \cdot \psi(x) d x .
\end{aligned}
$$

Schwarz' inequality and application (1°) to $\Pi\left(\partial / \partial x_{i}+s_{i}\right) \cdot \psi$ brings us

$$
|\psi(0)| \leqq C(s) \cdot C^{x}(t ; Q) \cdot\left\|\chi_{\left[-\alpha, a_{0}\right]}\right\|_{\tau} x^{x}(t ; Q)\left(\int_{-2 \alpha_{1}}^{0} \cdots \int_{-2 \alpha_{n}}^{0} e^{\langle 2 s-t, x\rangle} d x\right)^{1 / 2}
$$

Since $C(s)$ is a polynomial, we have for every $\varepsilon>0$
$|\psi(0)| \leqq C_{s} \cdot \exp [\langle\beta| R, e \mu| \rangle+(\gamma+\langle\varepsilon, \beta\rangle)|R e \lambda|]$, where C_{8} is independent of χ. Moreover, choosing suitable polynomials P_{1} and P_{2} we can also show

$$
\left|\mu^{p} \lambda^{q} D_{a}^{r} \cdot H^{x}(0, a)\right| \leqq C_{p, q, r, \varepsilon} \exp [\langle\beta,| R e \mu| \rangle+(\gamma+\langle\varepsilon, \beta\rangle)|R e \lambda|],
$$

for any p_{i}, q_{j}, r_{k} and $\varepsilon>0$ and constant $C_{p, q, r, s}$ is independent of χ. This shows the following function is the desired one:

$$
f(g)=f(a, b, c)=(2 \pi)^{-n-1} \int_{R^{n} \times R} H^{(i \mu, i \lambda)}(0, a) e^{-i[\langle\mu, b\rangle+\lambda c]} d \lambda d \mu,
$$

($i=\sqrt{-1}$). Once surjectivity is proved, topological isomorphism easily follows from Banach-Steinhauss theorem, cf. [3].

Added to Proposition. (iii) Suppose L is a continuous linear operator in \mathcal{C} and characters χ_{1} and χ_{2} are both in general position. If it holds for all $g \in G, L \cdot T_{g}^{\chi_{1}}=T_{g}^{\chi_{2}} \cdot L$, then $L=0$ or $\chi_{2}=a^{*} \chi_{1}$ for some $a \in A$ and $L=$ const. T_{a}.

References

[1] A. A. Kirillov: Unitary representations of nilpotent Lie groups. Uspekhi. Math. Nauk 17:4 (106), 57-110 (1962) (in Russian).
[2] L. Pukanszky: Leçons sur les représentations des groupes. Dunod, Paris (1967).
[3] S. Ando: Analogue of Paley-Wiener type theorem for the group of linear transformations of a straight line (in Russian). J. Math. Kyoto Univ., 14-2, 195-213 (1974).
[4] V. S. Petrosyan: On non-unitary representations of a group of triangular matrices of the third order. Vestnik of Moscow Univ., No. 1, 16-22 (1971) (in Russian).

