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132. On the Convergence o the Godounov’s Scheme or
First Order Quasi Linear Equations

By Alain Yves LE Roux
Dpartment de Mathmatiques, I. N. S.A. 35000, Rennes, France

(Communicated by KSsaku YOSID/k, M. $./x., NOV. 12, 1976)

Let T0, uoeL(R), which is assumed of locally bounded variation;
we consider the Cauchy’s problem"

(1) --q- [f(u,x,,O]+g(u,x,O--O if (x,t)eRIO, T[;

( 2 ) u(x, 0)=u0(x) if x e R;
where f e C(R]0, TD, g e C(RZ]0, TD are such that g, f and 3f/3x
are Lipschitz continuous with respect to u, uniformly in (x, t)eR]0, T[,
g and 3f/3x are Lipschitz continuous with respect to x, uniformly in
(u, t) e R]0, T[, and for u=0, g(0,., .) and 3f/3x(O,., .) are uniform-
ly bounded on R]0, T[.

The problem (1), (2) is generally non linear: the solution may be
discontinuous and not unique, so we need a weak definition.

Definition 1. A weatc solution of (1), (2) is a unction u e L(R
]0, TD, satisfying:

for any ff e C(R ]0, TD, with compact support.
The existence of a weak solution can be proved by the vanishing

viscosity method, from the parabolic equation with e

( 4 ) u, q_ [f(u., x, t)] q- g(u., x, t)--

using a compactness argument in Loo(R]0, T[)for the family
(see [3]).

But uniqueness o weak solutions of (1), (2), is not ensured starting
from (4) rather than (1), Kruzkov proposes another definition of solu-
tions, that makes existence and uniqueness sure. See [3], and Hopf [2].

Definition 2. A Kruzkov’s solution of (1),(2) is a function
u e L(R]0, TD, satisfying:

yk e R, e Cz(R ]0, TD, with compact support and non negative:

I--- q- sg(u-- Ic)(f(u, x, t)--f(tc, x,
(5)

(-/0 \--
, t) +(, ,

where sg is the sign unction sg(x)=x/Ix] if x0, sg(0)=0, vR >0
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C [0, T[ of measure zero, such that"

( 6 ) lim [ [u(x, t)-- Uo(X) dx-- O.
t-.O,t6 J

Under certain assumptions of piecewise regularity on u, Hopf [2]
proves that it satisfies a well known uniqueness condition, the entropy
condition of Oleinik [7]" the good solution is the only one we obtain after
replacing f(., x, t) by its convex (resp. concave) hull at each point (x, t)
eR [0, T[ on the interval [u(x--0, t), u(x/O, t)] when u(x--0, t)_u(x
+0, t) (resp. [u(x/0, t), u(x--O, t)] when u(x+0, t)Ku(x--O, t)).

Taking this condition in account, we get for the solution of the
Riemann’s problem"

0u 3__ (a if x<0,-+ [f(u,x, t)] + g(u, x, t) 0 u(x, O)
b if x 0

some information on the line x=0, or small t"
u(0, t) is closed to c e I(a, b) such that"

( 7 ) sg(b--a)f(c, O, 0)---- Min [sg(b--a)f(k, O, 0)],
kI(a,b)

where I(a, b) is the interval [Inf (a, b), Sup (a, b)].
Using (7) at each step of the discretization, we can obtain a scheme of
order one, the Godounov’s scheme, that was described in [6] and [8].

Let h>0 be the space meshsize, destinated to vanish. Let q>0 be
a fixed constant" the time mesh size is taken equal to qh. R and [0, T[
are covered by intervals, indexed by i e Z, n

I--[(i-1/2)h, (i+l/2)h[,
J-- [(n-- 1/2)qh, (n+ 1/2)qh[ [0, T[.

Let u be the Kruzkov’s solution of (1), (2) u will be approached by
a function u defined on R [0, T[, of constant value on each set I J,
for i e Z, n<_N.

We write"
u(x, t)=u if (x, t) e I J.

The initial condition u0 is approached on each I by the constant"
1 Uo(X)dx.(8) ,,

We fix n<_N, and suppose we know all the constants u2 for i e Z;
then we construct all the values u2+x with the help of the following
scheme"

u+,. e HuE +
( 9 ) realized Min [sg(u,+--u)f(c, (i+ 1/2)h, nqh)]

ql,n+1__ n

(10) --u--q[f(u,+/, (i+ l/2)h, nqh)
--f(u,’.,./, (i 1/2)h, nqh)] qhg(u,,’ ih, nqh).

The scheme (9), (10) is not exactly the one which is described in [6].
Some differences can appear when 8f/Su presents more than one root;
and the convergence to this or that weak solution does depend on the
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choice of the root (examples are given in [4], [5]), but the value selected
by (9) ensures that u will converge to the Kruzkov’s solution u, when
h vanishes. Observe that the minimizing value u\/, of (9) may be not
unique; nevertheless ,/. is uniquely determinated for (10) only uses
function evaluations with u./v. We prove the following result"

Theorem. If the stability condition of Courant-Friedrichs-Lewy"
f (w t)l_l,(11) (w, x, t) eR]0, T[ q x,

is ensured, then the family (ua}>0 converges in Lo(R]0, TD to the
Kruzkov’s solution of (1), (2) when h vanishes.

Proof. In the following, letters C and M always represent real
positive constants, that do not depend on h, i or n. For fixed h0,
n0, using (11) we first established the following estimates, the proof
of which is very technical and needs a case by case investigation, similar
to the methods of [4], [5]. , u Ch(12) vie Z u+]<(l+C0h) Sup (u_v ]u] +v])+
(13) vleN ],++--u+l<(l+Ch)_ ]u+--u[+VIh;

(i) VIN lu+l-ul lu+-ul+CJh(l+Suplul);

(15) vk e R, vie z"
u (i+ 1/2)h, nqh)]u+ k]u--k]--q[sg( +v--k)(f(u+,

--f(k, (i + 1/2)h, nqh))]
8+ q[ g(u_l/-- k)(f(u_/, (i-- 1/2)h, nqh)

f(k, (i-- 1/2)h, nqh))]
--qhsg(u+-k)[g(u, ih, nqh) + 1 /h(f(k, i+ 1/2)h, ngh)

f(k, (i--1/2)h, nqh))]
+ ch [u+--uT + c’h.

We get from (12), step, by step and using (8)"
(16) Sup ]u+[gMo(c,+]uo())e

since u0 is of locally bounded variation, we have"

(17) vleN [u+-ull/h uo(x+h)--uo(x)dxMIh.

Then, rom (13), (14) the approximating solution u is of locally
bounded variation in both variables x and t, uniformly on h. From this
and (10, i ollows tha (ua}>0 is relatively compact in Lo(RX ]0, TD.
See [1], [3], [4] and [5] or details on similar methods.

Using he estimates (13), (14), (10, (17) we verify that the limit
any sequence of (u}>0 is satisfying (6), and sarting rom (15) with a
non negative unction C(Rx ]0, TD, with compact support, we obtain
(5), by passing through the limi when k vunishes, with regulurizaion
rgumens o reat the discontinuous term with sign unction. Since
he Kruzkov’s solution is unique, he whole amily {ua}a>0 will converge
o u in Loo(RX]0, T[), and he heorem is proved.
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The scheme (9) (10) generalizes the decentred scheme to the case of
a non monotonic function f. It’s stable (from (16)) and gives a good
representation of discontinuities, without any oscillations, owing to the
conservation of the total variation. In [1], Conway and Smoller have
established the convergence for the Lax’s scheme, using similar argu-
ments; this study was generalized to a wider class of schemes with
artificial viscosity terms in [4], [5].

These results can be extended to the p-dimension problem"

(18) u + .-- -- 3X
[f(u, x, t)] -- g(u, x, t)=0

if (x, t) e R ]0, T[
(19) u(x, O)=u0(x) if x e R;
that we may numerically solve by the same scheme. We only need to
put (18) under the form:

Each term of this sum is discretized s an one-dimension problem,
with pf instead of f, that’s making harder the stability condition
(11), and then their mean value is put equal to zero. We also obtain
a convergent family of approached solutions to the Kruzkov’s solution
of (18), (19), by the use of estimates analogue with (12), (13), (14) and
(15). See [3] and [4] more details.
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