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132, On the Convergence of the Godounov’s Scheme for
First Order Quasi Linear Equations

By Alain Yves LE Roux
Départment de Mathématiques, I. N. S. A. 35000, Rennes, France

(Communicated by Koésaku YosipA, M. J. A., Nov. 12, 1976)

Let T>0, u,e L*(R), which is assumed of locally bounded variation;
we consider the Cauchy’s problem:
(1) B 2 n 4o =0 if @0 e RXI0, TI;
(2) u(zx, 0)=u,x) ifxeR;
where f e C'(R*x 10, TD), g € C°(R*x 10, T[) are such that g, f and of/ox
are Lipschitz continuous with respect to %, uniformly in (z, t)e Rx]0, T,
g and of/dx are Lipschitz continuous with respect to «, uniformly in
(u, t) e RX10, T[, and for =0, g(0, -, -) and 3f/3%(0, -, -) are uniform-
ly bounded on RXx 10, T'T.

The problem (1), (2) is generally non linear: the solution may be
discontinuous and not unique, so we need a weak definition.

Definition 1. A weak solution of (1), (2) is a function ue L~(R
%10, TD, satisfying:

9 3 _
3 [, ot s, 038 —gtu, 2, g} dwdt+ [ g(a, Ou@dz=0,

for any ¢ € CX(R %10, T), with compact support.
The existence of a weak solution can be proved by the vanishing
viscosity method from the parabolic equation With e>0:

(4) L2 +——[f(unx t)]+g(un Z, t)—»E

a s 7
using a compactness argument in Lt (RXx10, T[) for the family {u,},s,
(see [3]).

But uniqueness of weak solutions of (1), (2), is not ensured ; starting
from (4) rather than (1), Kruzkov proposes another definition of solu-
tions, that makes existence and uniqueness sure. See [3], and Hopf [2].

Definition 2. A Kruzkov’s solution of (1),(2) is a function
ue L*(Rx]0, T, satisfying :

vk e R, v¢ € CA(R x]10, TD), with compact support and non negative:

”mm {'““ | ¢+sg(u B @, @, ) fk, @, )2 ¢

(5) '
—sgtu—r) (-

sg(u—Fk) (aw &, z, )+ g(u, z, t)>¢}dxdt20,

where sg is the sign function: sg(x)=wx/|x|if 2+0, sg(0)=0. vR>03&
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[0, TT of measure zero, such that:
(6) lim luxe, t) —ux)| de=0.

t=0,te¢ 2 J 1zI<R
Under certain assumptions of piecewise regularity on u, Hopf [2]

proves that it satisfies a well known uniqueness condition, the entropy
condition of Oleinik [7] : the good solution is the only one we obtain after
replacing f(-, z, t) by its convex (resp. concave) hull at each point (z, t)
e Rx[0, T[ on the interval [u(x—0,t), u(x+0, t)] when u(x—0, t) <u(x
40, t) (resp. [u(x+0,t), u(x—0, t)] when u(x+40, t) <u(x—0, t)).

Taking this condition in account, we get for the solution of the
Riemann’s problem :

ou , 0 ) . _fa if <0,
3t—+—a;[f(u, x, DI+ 9w, 2, £)=0; u(x, 0)——{b if 5>0;
some information on the line x=0, for small ¢:
u(0, t) is closed to ¢ € I(a, b) such that:
(7) s9(b—a)f(c,0,0= Min [sg(b—a)f(k,0,0)],

where I(a, b) is the interval [Inf (a, b), Sup (a, b)].
Using (7) at each step of the discretization, we can obtain a scheme of
order one, the Godounov’s scheme, that was described in [6] and [8].
Let >0 be the space meshsize, destinated to vanish. Let ¢>0 be
a fixed constant: the time mesh size is taken equal to gh. R and [0, T[
are covered by intervals, indexed by 1€ Z, n€{0,1, - - -, N=[1+T/qhl}
Ii=16—1/2)h, C+1/2)hl,
Jo=[(n—1/2)qh, (n+1/2)qr[ N[0, T[.
Let u be the Kruzkov’s solution of (1), (2); # will be approached by
a function u, defined on Rx [0, T'[, of constant value on each set I, X J,,
forie Z, n<N.
We write:
Uy (X, B)=u? if (x,t) eI, xJ,.
The initial condition %, is approached on each I, by the constant:

0— 1
(8) w=1 j ,, @),

We fix n<N, and suppose we know all the constants «} for ie Z;
then we construct all the values u?*! with the help of the following
scheme:

Uis1n € T(UF, U\ o)
(9) realized ~ Min  [sg(uf,,—w)S(k, (i+1/2)h, ngh)];

KEI(uP,ufyy)
wpt=up — qLf (U110 @ +1/2), nqh)
— f(U3rsy €—1/2)R, nql)] — qhg(uz, ih, ngh).
The scheme (9), (10) is not exactly the one which is deseribed in [6].
Some differences can appear when 3f/ou presents more than one root;
and the convergence to this or that weak solution does depend on the

10)
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choice of the root (examples are given in [4], [5]), but the value selected
by (9) ensures that u, will converge to the Kruzkov’s solution %, when
h vanishes. Observe that the minimizing value u?,,, of (9) may be not
unique; nevertheless #7** is uniquely determinated for (10) only uses
function evaluations with «7,,,. We prove the following result:

Theorem. If the stability condition of Courant-Friedrichs-Lewy :
a1 vw,z,t) e R*x10, Tl ¢ _g%(w, 2, t)‘gl,

18 ensured, then the family {u,}y-, converges in Li, (RXx]10,T[) to the
Kruzkov’s solution of (1), (2) when h vanishes.

Proof. In the following, letters C and M always represent real
positive constants, that do not depend on 7,7 or n. For fixed >0,
n>0, using (11) we first established the following estimates, the proof
of which is very technical and needs a case by case investigation, similar
to the methods of [4], [5].

(12) vie Z |up*|< (14 Coh) Sup (ui_ypl, |97, |47 ,10D) + Col 5
(13) vieN mZS:I luﬁ%—u?”IS(l+Clh)m§+1 |} —u?|+ Cih?;

(A4  vleN 7 |w"—u|< 33 |ufa—uf|+CIh(1+Sup [u7));
HIZI 16T +1 iez

(1) vkeR,vieZ:
gt —E|<|up—E|— qlsg(u}1n— E)(f (U710 @+1/2)h, nqh)
—Jf(k, @G+1/2)h, ngh))]
+ alsgU-1— K)(f (Ui-12) G—1/2)h, mqR) ‘
—f(k, (@2—1/2)h, nqh))]
—qhsg(ui*'—k)lg(uz, ih, nqh) +1/h(f (k, i+ 1/2)h, ngh)

+ch| |+ h? — Sk, G—1/2)h, ngh))]
ch|uptt—ul|+c'hl.

We get from (12), step, by step and using (8):
(16) §3zp |27 < M o(Corey+ | Uo| Lo ry) €T/

since u, is of locally bounded variation, we have:
A vIeN 3 [ua—w<i/h | @0 =) de<Milh.
1211 lz|<Ih

Then, from (13), (14) the approximating solution u, is of locally
bounded variation in both variables x and ¢, uniformly on 2. From this
and (16), it follows that {u,},s, is relatively compact in L{.(R %10, TD.
See [1], [3], [4] and [5] for details on similar methods.

Using the estimates (13), (14), (16), (17) we verify that the limit of
any sequence of {u,},, is satisfying (6), and starting from (15) with a
non negative function ¢ e C*(R x 10, T[), with compact support, we obtain
(5), by passing through the limit when % vanishes, with regularization
arguments to treat the discontinuous term with sign function. Since
the Kruzkov’s solution is unique, the whole family {u,},-, will converge
to u in Li (R %10, T[), and the theorem is proved.
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The scheme (9) (10) generalizes the decentred scheme to the case of
a non monotonic function f. It’s stable (from (16)) and gives a good
representation of discontinuities, without any oscillations, owing to the
conservation of the total variation. In [1], Conway and Smoller have
established the convergence for the Lax’s scheme, using similar argu-

ments; this study was generalized to a wider class of schemes with
artificial viscosity terms in [4], [5].

These results can be extended to the p-dimension problem :

ou 2,0
(18) —+ 2 ——f @, z, )]+ g(u, x, t)=0
ot =1 oxy
if (x,t) e R?x10, T[;
19) w(x, 0) =1u,(x) if x e R?;
that we may numerically solve by the same scheme. We only need to
put (18) under the form:

12 {au 0 }
— —_—t— , &, £)] 4 s &, 1) =0.
D /Z=1 at 0x, [p/ s, 2, D1 +90, 2, )

Each term of this sum is discretized as an one-dimension problem,
with pf; instead of f,, that’s making harder the stability condition
(11), and then their mean value is put equal to zero. We also obtain
a convergent family of approached solutions to the Kruzkov’s solution

of (18), (19), by the use of estimates analogue with (12), (13), (14) and
(15). See [3] and [4] more details.
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