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1. Introduction. Results on the distribution of zeros of
Dirichlet’s L-function on the line a=1/2 have been proved by analogous
method in case of Riemann’s -function. For example, Hardy proved
in 1914 that there exist infinitely many zeros of Riemann’s -function
on the critical line and later Hardy and Littlewood proved that

No(T)KT
for some absolute constant K and then these results were easily ex-
tended in case of L(s, Z). (See Suetuna [8] Chap. III.) In 1942, A.
Selberg proved that

No(T) cT log T
for some constant c and this method was also applicable to L(s, .).
Recently N. Levinson gave a different proof of Selberg’s result with
c=1/3.

In this note we shall show that the essential idea of Levinson is
also applicable to the case of L(s, Z) in order to prove the fundamental
properties of L(s, ). Details of the calculation will appear elsewhere.

The author wishes to express his thanks to Prof. T. Tatuzawa and
Prof. Y. Motohashi who encouraged him preparing this note.

2. Fundamental properties of L(s, Z). Throughout this note,
Z denote a primitive character with mod q and T is a sufficiently large
number. We use the following notations;

1a=--(1--Z(-- 1)) (2.1)
2

h(s) h(s, Z)
_r’ _s q- a (2.2)

2

e(Z)= (--i) , z(m)e=’’/ (2.3)

f’(s) h’(s) / h(s). (2.4)
As is well known, we have

I(z)l=.
We ean choose a complex number, with
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such that
-=(). (2.5)

Then we can writethe unctional equation o L(s, ) as
h(s)L(s, ) h(1 s)L(1 s, ). (2.6)

We differentiate both sides of (2.6) and eliminate L(1--s, ) from there.
We get

h(s)L(s, )(f’(s) + f’(1 s))
(2.7)

(h(s)L’(s, Z) + h(1 s)L’(1 s, )).
The right hand side of (2.7) is real or s=l/2+it. But or lal=<10 and
t 1, we have

f’() + f’(1--) log + 0 - (..8)

and then

for sufficiently large t.
zero, we have

But, for all s, we get

then we get

Now we have just proved

f’(s)+f’(1--s)O
Hence if, or large t0, either side o (2.7) is

h(s) :/:0,

L(s, Z) O.

Theorem A. Let be a su1ciently large number. Then p=1/2.
+ ir is a zero of L(s, Z) if and only if p is also a zero of Re ah(s)L’(s, Z).

We can immediately prove
Corollary B. Under the same assumption of Theorem A, if p is

a zero of L’(s, ), then p is also a zero of L(s, ).
Now we calculate the number of zeros p=1/2 + it of Re ah(s)L’(s, ).

We put
G(s) G(s, z) L(s, ) + L’(s, )/ (if(s) + f’(1 s)). (2.9)

From (2.7) and the functional equation, we get
ah(s)L’(s, Z)=--h(1--s)(f’(s)+f’(1--s))G(1--s, 2). (2.10)

Hence we may count the number of zeros of
g(t) Re ah(s)(f’(s) +f’(1-- s))G(s, Z), (2.11)

where a=1/2, instead of Re ah(s)L’(s,). Furthermore we remark
that

G(s, ) o
if and only if L’(s, )=0.

Now the zeros of g(t) may occur in two cases;
i) G(s) 0 and

arg ah(s)(f’(s) +f’(1- s))G(s)-- rood (2.12)
2

h(s)L(s, ;) 0.
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ii) G(s)--O.
For simplicity of the following arguments, we assume that neither
t--T nor T+ U is zero of g(t). There exist N zeros with multiplicity
and N distinct zeros of L’(s, ) on the segment [1/2+iT, 1/2+i(T+ U)].
We divide it into N+ 1 subintervals by p=1/2 +,-()((),, <+,() which
are distinct zeros of L’(s, Z). Let W denote the change of’the argument
o ah(s)(f’(s)+ f’(1-s))G(s) on the ]-th subinterval. Then there exist
at least

([,
zeros o g(t) rom Corollary B and bove remarks. To calculate W,
we use the same method of Levinson. Hence we get

W A arg h(s) + V+ 0(1)
U log qT + V+0 + 1
2 2

where V is the change of arg G(s) along the ]-th subinterval. On the
other hand, we have

--( V+uN)= 2=(No(D)--N) + O(log qT),
where D is the region defined by

1/2a3
TtT+U

and Ne(D) is the number of zeros of G(s) in D. Hence we get
Theorem C. We have

3. Main theorem. Now we may estimate N,o(D) instead
No(D) because we need uer bound of No(D).

where b is the same as that in Levinson. Using Littlewood theorem
and the approximate functional equation of L(s, Z) (See Lavrik [2], [3] or
Motohashi [6]), we get similar ormulas as (2.5), (2.6) and (2.20)-(2.27)
of [4]. We can estimate terms corresponding to those I’s as before
and finally we prove

Main theorem. For 0, we assume that
log q (log T)-’

and put

and

U T x=(qT)/qL 2
/(q/L)"
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Then we have
1No(T+ U, y.)--No(T, y.) >-=-(N(T+ U, y.)--N(T, y.)).
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