PROCEEDINGS

OF THE

IMPERIAL ACADEMY

Papers Communicated

1. Approximation of an Irrational Number by Rational Numbers.

By Matsusaburo Fujiwara m. i. A.
Mathematical Institute, Tohoku Imperial University, Sendai.

(Rec. Oct. 14, 1925. Comm. Dec. 12, 1925.)
Let ω be any positive irrational number, whose expansion into simple continued fraction is represented by

$$
\omega=a_{0}+\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots \cdots+\frac{1}{a_{n}}+\cdots \cdots=\left[a_{0} a_{1} a_{2} \cdots \cdots a_{n} \cdots\right] .
$$

If $\frac{P_{n}}{Q_{n}}=\left[a_{0} a_{1} a_{2} \ldots \ldots a_{n}\right]$ be the n-th convergent, and

$$
S_{n}=Q_{n}^{2}\left|\omega-\frac{P_{n}}{Q_{n}}\right|
$$

then the classical theorem due to Hurwirz and Borel can be expressed by

$$
\operatorname{Mini}\left(S_{n-1}, S_{n}, S_{n+1}\right)<\frac{1}{\sqrt{5}}
$$

and

$$
\operatorname{Mini}\left(S_{n-1}, S_{n}, S_{n+1}\right)<\frac{1}{\sqrt{8}}, \text { if } a_{n+1}=2
$$

I have extended ${ }^{1)}$ this theorem in the form

$$
\operatorname{Mini}\left(S_{n-1}, S_{n}, \ldots \ldots, S_{n+3}\right)<\frac{5}{\sqrt{221}}
$$

1) Bemerkung zur Theorie der Approximation der irrationalen Zahl durch rationale Zahlen, Science Reports of the Tohoku Imperial University, Ser. I, 14 (1924). See also the Japanese Journal of Mathematics, 1 (1924).
if $a_{n+1}=2, a_{n+2}=1$ and $\left(a_{n+1} a_{n+2} \ldots \ldots a_{n+8}\right) \neq(21122112)$. Recently ${ }^{1)}$ Fukasawa proved these theorems and their extensions by means of Klein's geometrical interpretation of continued fraction and completed my theorem into the more precise form :

$$
\operatorname{Mini}\left(S_{n-1}, S_{n}, S_{n+3}\right)<\frac{5}{\sqrt{221}}, \text { if } a_{n+1}=2, a_{n+2}=1
$$

Suggested by these results obtained by Fukasawa I have returned again to our problem and found that my former method is also capable of giving extended theorems of similar kind.

If $m-n$ be odd, then, since $\omega-\frac{P_{n}}{Q_{n}}, \omega-\frac{P_{m}}{Q_{m}}$ are of different signs, we have

$$
\begin{equation*}
\frac{Q_{m}}{Q_{n}} S_{n}+\frac{Q_{n}}{Q_{m}} S_{m}=\left|P_{m} Q_{n}-P_{n} Q_{m}\right|=Q_{n, m} \tag{1}
\end{equation*}
$$

where

$$
\frac{P_{n, m}}{Q_{n, m}}=\left[a_{n+1} a_{n+2} \ldots \ldots a_{m}\right]
$$

Hence we get

$$
\begin{align*}
& \frac{Q_{m}}{Q_{n}}=Q_{n m} \frac{1+\sqrt{1-4 S_{n} S_{m} / Q_{n m}^{2}}}{2 S_{n}} \tag{2}\\
& \frac{Q_{n}}{Q_{m}}=Q_{n m} \frac{1-\sqrt{1-4 S_{n} S_{m} / Q_{n m}^{2}}}{2 S_{m}} \tag{3}
\end{align*}
$$

Associating with (2)

$$
\frac{Q_{n-1}}{Q_{n}}=\frac{1-\sqrt{1-4 S_{n-1} S_{n}}}{2 S_{n}}
$$

we have

$$
\frac{\sqrt{1-4 S_{n-1} S_{n}}+\sqrt{1-4 S_{n} S_{m} / Q_{n m}^{2}}}{2 S_{n}}=\frac{Q_{m}}{Q_{n} Q_{n m}}-\frac{Q_{n-1}}{Q_{n}}=\frac{P_{n m}}{Q_{n m}}
$$

More generally, from (3) and

$$
\frac{Q_{l}}{Q_{m}}=Q_{m l} \frac{1+\sqrt{1-4 S_{m} S_{l} / Q_{m l}^{2}}}{2 S_{m}}
$$

where $l-m$ is odd, we can deduce the relation

$$
\begin{equation*}
\frac{\sqrt{1-4 S_{n} S_{m} / Q_{n m}^{2}}+\sqrt{1-4 S_{m} S_{l} / Q_{m l}^{2}}}{2 S_{m}}=\frac{Q_{l}}{Q_{m} Q_{m l}}-\frac{Q_{n}}{Q_{m} Q_{n m}}=\frac{Q_{n l}}{Q_{n m} Q_{m l}} \tag{5}
\end{equation*}
$$

If we put Mini $\left(S_{n}, S_{m}, S_{l}\right)=S$, then it follows

$$
\frac{Q_{n l}}{Q_{n m} Q_{m l}} \leqq \frac{\sqrt{1-4 S^{2} / Q_{n m}^{2}}+\sqrt{1-4 S^{2} / Q_{m l}^{2}}}{2 S}
$$

where the equality holds good only when $S_{n}=S_{m}=S_{l}$. In this case it

[^0]results from (1) that S_{n} must be rational, contradictory to the supposition that ω is irrational. Therefore we have finally, solving for S
\[

$$
\begin{equation*}
\left.S<\left\{\left(\frac{Q_{n m}^{2}+Q_{n l}^{2}+Q_{m l}^{2}}{Q_{n m} Q_{n l} Q_{m l}}\right)^{2}-\frac{4}{Q_{n l}^{2}}\right)\right\}^{-\frac{1}{2}} \tag{6}
\end{equation*}
$$

\]

Similarly we have from (4)

$$
\begin{equation*}
\operatorname{Mini}\left(S_{n-1}, S_{n}, S_{m}\right)<\left\{\left(\frac{1+P_{n m}^{2}+Q_{n m}^{2}}{P_{n m} Q_{n m}}\right)^{2}-\frac{4}{P_{n m}^{2}}\right\}^{-\frac{1}{2}} \tag{7}
\end{equation*}
$$

a result obtained by Fukasawa by a simple geometrical consideration.
Let especially

$$
\frac{P}{Q}=[2 \overbrace{11 \ldots \ldots 11}^{2 k}]
$$

then it can be proved by mathematical induction that

$$
1+P^{2}+Q^{2}=3 P Q
$$

whence we have

$$
\operatorname{Mini}\left(S_{n-1}, S_{n}, S_{n+2 k+1}\right)<\left(9-\frac{4}{P^{2}}\right)^{-\frac{1}{2}}
$$

for example : $P=2$ for $k=0, P=5$ for $k=1, P=13$ for $k=2$.
If we put

$$
\begin{aligned}
\frac{P_{n l}}{Q_{n l}}= & {[2 \overbrace{11 \ldots \ldots 11}^{2 k} \overbrace{22}^{2 k} \overbrace{11 \ldots .11}^{2 k}] } \\
& \frac{P_{n m}}{Q_{n m}}=[2 \overbrace{11 \ldots \ldots 11}^{2 k}] \\
& \frac{P_{m l}}{Q_{m l}}=[22 \overbrace{11 \ldots \ldots .11}^{2 k}]
\end{aligned}
$$

then it is not difficult to show that

$$
\begin{equation*}
Q_{n m}^{2}+Q_{n l}^{2}+Q_{m l}^{2}=3 Q_{n m} Q_{n l} Q_{m l} \tag{8}
\end{equation*}
$$

whence we have

$$
\operatorname{Mini}\left(S_{n}, S_{m}, S_{l}\right)<\left(9-\frac{4}{Q_{n l}^{2}}\right)^{-\frac{1}{2}}, \quad l=n+4 k+6, m=n+2 k+3
$$

for example:

$$
\begin{aligned}
& k=0, Q_{n l}=29, Q_{n m}=2, \quad Q_{m l}=5 \\
& k=1, \quad Q_{n l}=194, \quad Q_{n m}=5, \quad Q_{m l}=13
\end{aligned}
$$

As regards the so-called Markoff's equation (8), we refer to the papers: Markoff, Math. Ann., 17 (1880) ; Frobenius, Berliner Sitzungsber. 1914.

[^0]: 1) Fukasawa's Paper will appear in the Japanese Journal of Mathematics, 2 (1925)
