PROCEEDINGS

OF THE

IMPERIAL ACADEMY

PAPERS COMMUNICATED

1. Approximation of an Irrational Number by Rational Numbers.

By Matsusaburo Fujiwara M. I. A.

Mathematical Institute, Tohoku Imperial University, Sendai.

(Rec. Oct. 14, 1925. Comm. Dec. 12, 1925.)

Let ω be any positive irrational number, whose expansion into simple continued fraction is represented by

$$\omega = a_0 + \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} + \dots = [a_0 a_1 a_2 \dots a_n \dots].$$

If $\frac{P_n}{Q_n} = [a_0 a_1 a_2 \dots a_n]$ be the *n*-th convergent, and

$$S_n = Q_n^2 \left| \omega - \frac{P_n}{Q_n} \right|$$

then the classical theorem due to HURWITZ and BOREL can be expressed

by Mini
$$(S_{n-1}, S_n, S_{n+1}) < \frac{1}{\sqrt{5}}$$
,

and
$$Mini(S_{n-1}, S_n, S_{n+1}) < \frac{1}{\sqrt{8}}$$
, if $a_{n+1} = 2$.

I have extended¹⁾ this theorem in the form

$$Mini (S_{n-1}, S_n, \dots, S_{n+3}) < \frac{5}{\sqrt{221}},$$

1) Bemerkung zur Theorie der Approximation der irrationalen Zahl durch rationale Zahlen, Science Reports of the Tôhoku Imperial University, Ser. I, 14 (1924). See also the Japanese Journal of Mathematics, 1 (1924). if $a_{n+1} = 2$, $a_{n+2} = 1$ and $(a_{n+1}a_{n+2}\dots a_{n+3}) \neq (21122112)$. Recently¹⁾ FUKASAWA proved these theorems and their extensions by means of KLEIN'S geometrical interpretation of continued fraction and completed my theorem into the more precise form :

$$\operatorname{Mini}(S_{n-1}, S_n, S_{n+3}) < \frac{5}{\sqrt{221}}, \text{ if } a_{n+1} = 2, a_{n+2} = 1.$$

Suggested by these results obtained by FUKASAWA I have returned again to our problem and found that my former method is also capable of giving extended theorems of similar kind.

If m-n be odd, then, since $\omega - \frac{P_n}{Q_n}$, $\omega - \frac{P_m}{Q_m}$ are of different signs,

we have

$$\frac{Q_m}{Q_n}S_n + \frac{Q_n}{Q_m}S_m = |P_mQ_n - P_nQ_m| = Q_{n,m}, \qquad (1)$$

where

$$\frac{P_{n,m}}{Q_{n,m}} = [a_{n+1}a_{n+2}\ldots a_m].$$

Hence we get

$$\frac{Q_m}{Q_n} = Q_{nm} \frac{1 + \sqrt{1 - 4 S_n S_m / Q_{nm}^2}}{2 S_n}$$
(2)

$$\frac{Q_n}{Q_m} = Q_{nm} \frac{1 - \sqrt{1 - 4 S_n S_m / Q_{nm}^2}}{2 S_m}$$
(3)

Associating with (2)

$$\frac{Q_{n-1}}{Q_n} = \frac{1 - \sqrt{1 - 4 S_{n-1} S_n}}{2 S_n},$$

we have

$$\frac{\sqrt{1-4S_{n-1}S_n} + \sqrt{1-4S_nS_m/Q_{nm}^2}}{2S_n} = \frac{Q_m}{Q_nQ_{nm}} - \frac{Q_{n-1}}{Q_n} = \frac{P_{nm}}{Q_{nm}}.$$
 (4)
More generally, from (3) and .

$$\frac{Q_l}{Q_m} = Q_{ml} \frac{1 + \sqrt{1 - 4 S_m S_l / Q_{ml}^2}}{2 S_m}$$

where
$$l-m$$
 is odd, we can deduce the relation

$$\frac{\sqrt{1-4S_nS_m/Q_{nm}^2} + \sqrt{1-4S_mS_l/Q_{ml}^2}}{2S_m} = \frac{Q_l}{Q_mQ_{ml}} - \frac{Q_n}{Q_mQ_{nm}} = \frac{Q_{nl}}{Q_{nm}Q_{ml}}.$$
(5)
If we put Mini $(S_n, S_m, S_l) = S$, then it follows
 $Q_{nl} < \sqrt{1-4S^2/Q_{nm}^2} + \sqrt{1-4S^2/Q_{ml}^2}$

$$\frac{Q_{nl}}{Q_{nm}Q_{ml}} \leq \frac{\sqrt{1-4S^2/Q_{nm}^2+\sqrt{1-4S^2/Q_{ml}^2}}}{2S},$$

where the equality holds good only when $S_n = S_m = S_l$. In this case it

1) FUKASAWA'S Paper will appear in the Japanese Journal of Mathematics, 2 (1925)

No. 1.]

3

results from (1) that S_n must be rational, contradictory to the supposition that ω is irrational. Therefore we have finally, solving for S

$$S < \left\{ \left(\frac{Q_{nm}^2 + Q_{nl}^2 + Q_{ml}^2}{Q_{nm} Q_{nl} Q_{ml}} \right)^2 - \frac{4}{Q_{nl}^2} \right) \right\}^{-\frac{1}{2}}.$$
 (6)

Similarly we have from (4)

$$\operatorname{Mini}\left(S_{n-1}, S_{n}, S_{m}\right) < \left\{ \left(\frac{1+P_{nm}^{2}+Q_{nm}^{2}}{P_{nm}Q_{nm}}\right)^{2} - \frac{4}{P_{nm}^{2}} \right\}^{-\frac{1}{2}},$$
(7)

a result obtained by FUKASAWA by a simple geometrical consideration. Let especially

$$\frac{P}{Q} = \left[2\overbrace{11....11}^{2k}\right],$$

then it can be proved by mathematical induction that

$$1 + P^2 + Q^2 = 3PQ,$$

whence we have

Mini
$$(S_{n-1}, S_n, S_{n+2k+1}) < \left(9 - \frac{4}{P^2}\right)^{-\frac{1}{2}},$$

for example: P = 2 for k = 0, P = 5 for k = 1, P = 13 for k = 2. If we put

$$\frac{P_{nl}}{Q_{nl}} = \left[2 \underbrace{11....11}_{22} \underbrace{2k}_{11....11} 22 \underbrace{11....11}_{2} 2\right],$$
$$\frac{P_{nm}}{Q_{nm}} = \left[2 \underbrace{11....11}_{2k}\right],$$
$$\frac{P_{ml}}{Q_{ml}} = \left[22 \underbrace{11....11}_{2k} 2\right],$$

then it is not difficult to show that

$$Q_{nm}^2 + Q_{nl}^2 + Q_{ml}^2 = 3 \ Q_{nm} Q_{nl} Q_{ml}, \tag{8}$$

whence we have

Mini
$$(S_n, S_m, S_l) < \left(9 - \frac{4}{Q_{nl}^2}\right)^{-\frac{1}{2}}, \ l = n + 4k + 6, \ m = n + 2k + 3,$$

for example:

$$k = 0, \ Q_{nl} = 29, \ Q_{nm} = 2, \ Q_{ml} = 5;$$

 $k = 1, \ Q_{nl} = 194, \ Q_{nm} = 5, \ Q_{ml} = 13.$

As regards the so-called MARKOFF's equation (8), we refer to the papers: MARKOFF, Math. Ann., 17 (1880); FROBENIUS, Berliner Sitzungsber. 1914.