31. On the Power Series Whose Initial Coefficients are Given.

By Satoru Takenaka.
Shiomi Institute, Osaka.

(Rec. Feb. 15, 1927. Comm. by M. Fujiwara, m. i. a., March 12, 1927.)
Let $C_{\nu},(\nu=0,1, \cdots, n)$ be given constants not all zero (without any loss of generality let us suppose that $\left.C_{0} \neq 0\right)$; and consider a set $\{f(z)\}$ of functions, regular and analytic for $|z|<1$, and such that

$$
f(z) \equiv \sum_{\nu=0}^{n} C_{\nu} z^{\nu}, \quad\left(\bmod . z^{n+1}\right)
$$

Of these functions that which makes the integral

$$
I(f)=\frac{1}{2 \pi} \int_{|z|=1}|f(z)| \cdot|d z|
$$

minimum is a rational integral function $f^{*}(z)$ of a degree not exceeding $2 n$. This result has been proved by F. Riesz ${ }^{1)}$.

In this note I will give the inferior limit of $I(f)$ and the true expression of $f^{*}(z)$ when $C_{\nu}(\nu=0,1, \cdots, n)$ satisfy certain conditions.

Let $\varphi(z)$ be an arbitrary regular function of the form

$$
\varphi(z)=\sum_{\nu=0}^{\infty} a_{\nu} z^{\nu}, \quad(|z|<1)
$$

under the condition that

$$
|\varphi(z)| \leqq M \quad \text { for }|z|<1
$$

Then it can easily be seen that

$$
\begin{equation*}
\left|\sum_{\nu=0}^{n} C_{\nu} a_{n-\nu}\right| \leqq \frac{M}{2 \pi} \int_{|z|=1}|f(z)| \cdot|d z| . \tag{1}
\end{equation*}
$$

Now put

$$
\left(x_{0}+x_{1} z+\cdots+x_{n} z^{n}\right)^{2} \equiv \sum_{\nu=0}^{n} C_{\nu} z^{\nu},\left(\bmod . z^{n+1}\right)
$$

[^0]so that
\[

$$
\begin{equation*}
C_{\mu}=\sum_{\nu \sim 0}^{\mu} x_{\mu-\nu} x_{\nu}, \quad(\mu=0,1, \cdots, n) \tag{2}
\end{equation*}
$$

\]

and let $\alpha_{\nu}(\nu=0,1, \ldots, n)$ be the solution of the following linear algebraic equations:
(3)

$$
\left\{\begin{aligned}
& x_{n} \alpha_{0}+x_{n-1} \alpha_{1}+\cdots+x_{0} \alpha_{n}=\varepsilon \bar{x}_{0} \\
& x_{n-1} \alpha_{0}+x_{n-2} \alpha_{1}+\cdots+x_{0} \alpha_{n-1}=\overline{\varepsilon x}_{1} \\
& \cdots \\
& x_{1} \alpha_{0}+x_{0} \alpha_{1}=\overline{\varepsilon x}_{n-1} \\
& x_{0} \alpha_{0}=\overline{\varepsilon x_{n}}
\end{aligned}\right.
$$

Then by a well-known theorem of Carathéodory and Fejér, we can uniquely determine a rational function $\varphi^{*}(z)$ of a degree not exceeding n, regular for $|z|<1$ and of constant absolute magnitude m ($m>0$) for $|z|=1$, and such that

$$
\varphi^{*}(z) \equiv \sum_{\nu=0}^{n} \alpha_{\nu} z^{\nu}, \quad\left(\bmod . z^{n+1}\right)
$$

where m^{2} is the greatest characteristic value of non-negative Hermitian form $H(x, \bar{x})$ whose matrix is

$$
H=\overline{S S}, S=\left(\begin{array}{r}
a_{0} \\
a_{0}, \alpha_{1} \\
\cdots \cdots \cdots \\
a_{j}, \cdots \cdots, a_{n-1} \\
\alpha_{0}, a_{1}, \cdots \cdots, a_{n}
\end{array}\right)
$$

If we take this function $\varphi^{*}(z)$ instead of $\varphi(z)$ in (1), then, by the relations (2) and (3), it can easily be seen that the equality (1) takes the form

$$
\begin{equation*}
\sum_{\nu=0}^{n}\left|x_{\nu}\right|^{2} \leqq \frac{m}{2 \pi} \int_{|z|=1}|f(z)| \cdot|d z| \tag{4}
\end{equation*}
$$

from which we see that the inferior limit of $I(f)$ is $\frac{1}{m} \sum_{\nu=0}^{n}\left|x_{\nu}\right|^{2}$.
If therefore we can find a function which satisfies the equality in (4), then it should be the required function $f^{*}(z)$.

In particular, if $m=1$, the required function is nothing but

$$
f^{*}(z)=\left(x_{0}+x_{i} z+\cdots+x_{n} z^{n}\right)^{2} \equiv \sum_{\nu=0}^{n} C_{\nu} z^{\nu},\left(\bmod . z^{n+1}\right)
$$

For example, if $x_{0}+x_{1} z+\cdots+x_{n} z^{n}$ does not vanish in $|z|<1$, then, on account of the relation (3), Carathéodory-Fejér function becomes

$$
\varphi^{*}(z)=\varepsilon \frac{\bar{x}_{n}+\bar{x}_{n-1} z+\cdots+\bar{x}_{0} z}{x_{0}+x_{1} z+\cdots+x_{n} z^{n}} \equiv \sum_{\nu=0}^{n} a_{\nu} z^{\nu},\left(\bmod . z^{n+1}\right)
$$

and hence the required function must be given by

$$
f^{*}(z)=\left(x_{0}+x_{1} z+\cdots+x_{n} z^{n}\right)^{2}
$$

An interesting question, which is here left open, is whether m is generally equal to 1 or not; if the former be the case, our problem might be completely solved.

[^0]: 1) F. Riesz, Ueber Potenzreihen mit vorgeschriebenen Anfangsgliedern, Acta Math., 42 (1920), 145.
