100. Differential Geometry of Conics in the Projective Space of Three Dimensions.

II. Differential invariant forms in the theory of a twoparameter family of conics (first report).
By Akitsugu Kawaguchi.
(Rec. July 12, 1928. Comm. by M. Fujiwara, m.i.A., July 12, 1928.)

In my previous paper ${ }^{1)}$ I have built the theory of a one-parameter family of conics in the projective space of three dimensions. In this little note I will discuss the theory of a two-parameter family of conics in the projective space of three dimensions, as a continuation of that paper. This is done by some modifications of my theory of a m-parameter family of hypersurfaces of the second order in the projective space of n dimensions ${ }^{2}$) and of Fubini's surface-theory in the projective space ${ }^{3)}$. In this first report I will discuss, as a preliminary, the theory of a two-parameter family of conics in the plane, modifying my theory in the n-dimensional space ${ }^{4}$.

1. The differential forms. A two-parameter family of conics in the plane can be represented by the equations in parametric form

$$
\mathfrak{a}=\mathfrak{a}\left(u^{1}, u^{2}\right)
$$

where u^{1} and u^{2} are two parameters, when we adopt the coordinatesystem \mathfrak{a} of the conic in the plane, which has been introduced in my previous paper ${ }^{5}$. We assume a so normalized that
i.e.

$$
\begin{gathered}
(\mathfrak{a}, \mathfrak{a}, \mathfrak{a})=1 \\
\mathfrak{a}=(\overline{\mathfrak{a}}, \overline{\mathfrak{a}}, \overline{\mathfrak{a}})^{-\frac{1}{3}}-\overline{\mathfrak{a}} .
\end{gathered}
$$

Let us consider the differential forms :

$$
\begin{gather*}
g_{i j} d u^{i} d u^{j}=2\left(\mathfrak{a}_{i}, \mathfrak{a}_{j}, \mathfrak{a}\right) d u^{i} d u^{j} \tag{1}\\
a_{i j k} d u^{i} d u^{j} d u^{k}=\left(\mathfrak{a}_{i}, \mathfrak{a}_{j}, \mathfrak{a}_{k}\right) d u^{i} d u^{j} d u^{k}, \tag{2}
\end{gather*}
$$

[^0][Vol. 4,
which are clearly invariant for any projective transformation and for any change of parameters u^{1}, u^{2}, where $g_{i j}$ and $a_{i j k}$ are symmetrical quantities (or symmetrical tensor).

Now we introduce such six conics $\mathfrak{X}_{\alpha}, \mathfrak{X}^{\beta}(\alpha, \beta=1,2,3)$ that

$$
\begin{gather*}
\mathfrak{x}_{\alpha} \mathfrak{U}^{\prime}=\mathfrak{x}_{\alpha} \mathfrak{A}_{i}=\mathfrak{a} \mathfrak{X}^{\beta}=\mathfrak{a}_{k} \mathfrak{X}^{\beta}=0, \tag{3}\\
\mathfrak{x}_{\alpha} \mathfrak{X}^{\mathfrak{B}}=\delta_{\alpha}^{\beta}=\left\{\begin{array}{l}
1, \alpha=\beta, \\
0, \alpha \neq \beta,
\end{array}\right.
\end{gather*}
$$

where \mathfrak{N} are contravariant coordinates of the conic \mathfrak{a} and $\mathfrak{H}_{i}, \mathfrak{a}_{k}$ denote the first covariant derivatives of \mathfrak{A}, a respectively with regard to the quadratic form (1). Then the second covariant derivatives of \mathfrak{a} and \mathfrak{A} are linearly represented by $\mathfrak{a}, \mathfrak{a}_{l}, \mathfrak{X}_{\alpha}$ and $\mathfrak{A}, \mathfrak{A}_{l}, \mathfrak{X}^{\beta}$, i.e.

$$
\left\{\begin{array}{c}
\mathfrak{a}_{i j}=-g_{i j} \mathfrak{a}-\frac{1}{2} a_{i j k} g^{k l} \mathfrak{a}_{l}+B_{i j}{ }_{i j}^{\alpha} \mathfrak{X}_{\alpha} \tag{4}\\
\mathfrak{A}_{k j}=-g_{k j} \mathfrak{N}+\frac{1}{2} a_{i j k} g^{j l \mathfrak{N}_{l}}+B_{i k \beta} \mathfrak{X}^{\beta}, \\
a_{i j} \mathfrak{X}^{\beta}=B_{i j}{ }^{\beta}, \quad \mathfrak{A}_{i j \mathfrak{c}_{\alpha}}=B_{i j \alpha .}
\end{array}\right.
$$

where
In (4) we get new differential forms :

$$
\begin{equation*}
B_{i j}{ }^{\alpha} d u^{i} d u^{j}, \quad B_{i k k} d u^{i} d u^{j}, \tag{5}
\end{equation*}
$$

which remain unaltered by every projective transformation and by any change of parameters. Moreover the first covariant derivatives of \mathfrak{x}_{α} and \mathfrak{X}^{β} are linearly represented by \mathfrak{a}_{k}, \mathfrak{f}_{\curlyvee} or $\mathfrak{M}_{i}, \mathfrak{X}^{\top}$:
where we put

$$
\begin{equation*}
\mathfrak{x}_{\alpha} \mathfrak{X}_{,, k}^{\beta}=-\mathfrak{x}_{\alpha, k} \mathfrak{X}^{\beta}=p_{\ddot{k}^{\alpha}}{ }^{\beta} . \tag{7}
\end{equation*}
$$

2. Determination of \mathfrak{X}^{β}. We can now choose \mathfrak{X} arbitrarily, that is we can introduce new conics $\overline{\mathfrak{X}^{\beta}}$ instead of \mathfrak{X}^{β} such that

$$
\begin{equation*}
\mathfrak{X}^{\alpha}=P_{\beta}^{\alpha} \mathfrak{X}^{\beta}, \tag{8}
\end{equation*}
$$

where the quantities P_{β}^{α} are in general arbitrary functions of parameters. Corresponding to this change (8), the forms (5) are linearly transformed as follows :

$$
\bar{B}_{i \ddot{ }{ }^{\alpha}}=P_{\beta}^{\alpha} B_{i j}{ }^{\beta}, \quad \bar{B}_{i j \alpha} P_{\beta}^{\alpha}=B_{i j}{ }^{\beta}
$$

By this reason we can choose \mathfrak{X}^{α} so that

$$
\left\{\begin{array}{l}
B_{i{ }^{\bullet 1}}^{1} d u^{i} d u^{j}=g_{i j} d u^{i} d u^{j}, \tag{9}\\
B_{i{ }^{2}} 2 d u^{i} d u^{j}=\frac{1}{J-I^{2}}\left\{I g_{i j}-r_{i j}\right\} d u^{i} d u^{j}, \\
B_{i j}^{3} d u^{i} d u^{j}=q_{i j} d u^{i} d u^{j}
\end{array}\right.
$$

where $r_{i j} d u^{i} d u^{i}$ is an arbitrary form with coefficients not proportional to those of $g_{i j} d u^{i} d u^{j}$ and

$$
\begin{equation*}
I=g^{i j} r_{i j}, \quad J=g^{i k} g^{j l} r_{i j} r_{k l}=r_{i j} r^{i j} \tag{10}
\end{equation*}
$$

The form $q_{i j} d u^{i} d u^{j}$ is such that

$$
q_{i j} d u^{i} d u^{j}=\lambda\left|\begin{array}{ccc}
\left(d u^{1}\right)^{2} & 2 d u^{1} d u^{2}\left(d u^{2}\right)^{2} \tag{11}\\
g_{11} & 2 g_{12} & g_{22} \\
r_{11} & 2 r_{12} & r_{22}
\end{array}\right| \equiv \lambda \bar{q}_{i j} d u^{i} d u^{j}, \frac{1}{\lambda}=\bar{q}_{i j} \bar{q}^{i j}
$$

then it follows from (9) that

$$
\begin{equation*}
B_{i j}^{\alpha} B^{i j \beta}=B^{i j \alpha} B_{i j}^{i \beta}=\delta^{\alpha \beta} \tag{12}
\end{equation*}
$$

and the $B_{i j}{ }^{\alpha} d u^{i} d u^{j}$ can be expressed by two forms $g_{i j} d u^{i} d u^{j}$ and $r_{i j} d u^{i} d u^{j}$.
3. Equations of integrability. By considering inversely (4) and (6) as the differential equations for \mathfrak{a} and \mathfrak{x}^{α}, \mathfrak{X}^{β}, we can determine the coordinates \mathfrak{a} of the family of conics in the above mentioned forms. For the solvability of these equations it is necessary and sufficient that the following relations hold good

$$
\begin{align*}
& p_{\left(\hat{i}|\dot{\alpha}|^{\beta},{ }_{j}\right]}-B^{k}{ }_{(i \mid \alpha 1} B_{j \dot{j} \dot{k}^{\beta}}+p_{(\hat{i}|\dot{\alpha}|}{ }^{\gamma} P_{i j)^{\beta}}, \tag{15}
\end{align*}
$$

where

$$
B_{i j k m}=B_{i j}{ }^{i j^{a}} B_{k m a}
$$

and $K_{j k i i^{m}}$ is the Gauss' curvature tensor.

From (13) we get

$$
\begin{align*}
& \frac{1}{2} B_{j m}^{\beta}\left(\delta_{\alpha}^{\beta} \delta_{k}^{j}-B^{i j \alpha} B_{i i k}^{\beta}\right)=\left\{\frac{1}{2} K_{j k i m}-g_{i\left\langle j^{j} \hat{l}_{k j m}\right.}-\frac{1}{2} a_{m i(j, k]}\right. \tag{16}\\
&\left.+\frac{1}{4} a_{\cdot i[j}^{l} a_{k l l m}\right\} B^{i j \alpha}
\end{align*}
$$

and also from (14)

Hence it is known by the last result in No. 2 that the quantities $b_{j m \beta}$ and $p_{j \beta}{ }^{\boldsymbol{\alpha}}$ are represented by $g_{i j}, r_{i j}$ and $a_{i j k}$. Therefore we can conclude that only three differential forms $g_{i j} d u^{i} d u^{j}, r_{i j} d u^{i} d u^{j}$ and $a_{i j k} d u^{i} d u^{j} d u^{k}$ are essential with regard to the family.

Now we put

$$
\begin{equation*}
r_{i j}=a_{i k l} a_{j}^{a k l} \tag{18}
\end{equation*}
$$

then we get the following fundamental theorem, when $r_{i j}$ are not proportional to $g_{i j}$.

Given two differential forms $g_{i j} d u^{i} d u^{j}, a_{i j k} d u^{i} d u^{j} d u^{k}$, between which the relations (13), (14) and (15) hold good, the family of conics with those forms in the plane is uniquely determined, except for projective transformations.

[^0]: 1) Differential geometry of conics in the projective space of three dimensions, I. Fundamental theorem in the theory of a one-parameter family of conics, these Proceedings 4 (1928), 255-258.
 2) See my paper, Fundamental forms in the projective differential geometry of m-parametric families of hypersurfaces of the second order in the n-dimensional space, these Proceedings, 3 (1927), 310-314, and Ueber projektive Differentialgeometrie V, which will be published in the Tohoku Mathematical Journal.
 ${ }_{2}$) See G. Fubini-E. Čech, Geometria proiettiva differenziale, I and II, Bologna, 1926-27.
 3) loc. cit.
 4) loc. cit.
