97 On Sufficient Conditions for the Uniqueness of

 the Solution of $\frac{d y}{d x}=f(x, y)$.By Tatsujirô Shimizu.
Mathematical Institute, Tokyo Imperial University. (Rec. July 4, 1928. Comm. by T. Takagi, m.I.A., July 12, 1928.)
We consider the differential equation

$$
\begin{equation*}
\frac{d y}{d x}=f(x, y), \tag{1}
\end{equation*}
$$

where $f(x, y)$ is a continuos function of x and y in the domain D ($0 \leqq x \leqq a,|y| \leqq b$). The equation (1) has always at least an integral curve which passes through $x=0, y=0$. For the uniqueness of the integral curve of (1) many sufficient conditions are known. Besides the well-known Lipschitz's condition $\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right|<K\left|y_{1}-y_{2}\right|$, a sufficient condition

$$
\begin{equation*}
\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right|<K\left|y_{1}-y_{2}\right| \log \frac{1}{\left|y_{1}-y_{2}\right|} \tag{2}
\end{equation*}
$$

or more generally

$$
\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right|<\varphi\left(\left|y_{1}-y_{2}\right|\right), \text { where } \lim _{y=0} \int_{\delta}^{y} \frac{d y}{\varphi(y)}=-\infty,(3)
$$

was given by Osgood, ${ }^{1)}$ and another condition

$$
\begin{equation*}
\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right|<k \frac{\left|y_{1}-y_{2}\right|}{x}, 0 \leqq k<1 \tag{4}
\end{equation*}
$$

by Rosenblatt. ${ }^{\text {) }}$
Recently Nagumo ${ }^{3}$) without knowing Rosenblatt's condition (4) has discovered a more general condition

$$
\begin{equation*}
\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right|<\frac{\left|y_{1}-y_{2}\right|}{x} . \tag{5}
\end{equation*}
$$

Nagumo ${ }^{4}$) and Perron ${ }^{55}$ have extended the condition (5) to

$$
\begin{equation*}
\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right| \leq \frac{\left|y_{1}-y_{2}\right|}{x} \tag{6}
\end{equation*}
$$

Further Perron ${ }^{6}$ has shown by simple examples that

[^0]\[

$$
\begin{equation*}
\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right|<(1+\varepsilon) \frac{\left|y_{1}-y_{2}\right|}{x}, \varepsilon>0 \tag{7}
\end{equation*}
$$

\]

can not be a sufficient condition.
On the other hand Montel ${ }^{1}$ has given a general condition which implies (2), (3) and other conditions given by Tonelli and Bompiani. Recently Iyanaga ${ }^{2)}$ discovered a more general criterion for sufficient conditions which can be expressed as follows: In order that the equation (1) has in D a unique solution which passes through $x=0$, $y=0$ it is sufficient that we can find a differential equation

$$
\begin{equation*}
\frac{d v}{d u}=g(u, v) \tag{8}
\end{equation*}
$$

satisfying the following conditions:

1) $g(u, v)$ is defined in the domain $D^{*}(0 \leqq u \leqq a, 0 \leqq v \leqq 2 b)$,
2) the equation (8) has at least one integral curve $v(u)=v\left(u, u_{0}, v_{0}\right)$ through any point (u_{0}, v_{0}) in $0<u_{0} \leqq a, 0<v_{0} \leqq 2 b$, so that

2 a) $v(u)$ exists for $0<u \leqq u_{0}$ and $0 \leqq v(u) \leqq 2 b$,
and 2 b) $\lim _{u=0} v(u)>0$ or $\lim _{u=0} v(u)=0$ and $\lim _{u=0} \frac{d v}{d u}>0$,
3) For arbitrary y_{1} and $y_{2}\left(y_{1}>y_{2}\right)$ in D we have the inequality

$$
g\left(x, y_{1}-y_{2}\right)>f\left(x, y_{1}\right)-f\left(x, y_{2}\right)
$$

The proof can be obtained as follows : Let $y_{1}(x)$ and $y_{2}(x)$ be two different solutions of (1) with $y_{1}(0)=y_{2}(0)=0$, then putting $y_{1}(x)-y_{2}(x)$ $=\psi(x)$ we have $\psi(0)=0$ and $\psi^{\prime}(0)=0$. Now suppose that there exist a point $x_{0}, 0<x_{0} \leqq a$, at which $\psi\left(x_{0}\right)>0$, and let $v(u)=v\left(u, u_{0}, v_{0}\right)$ be a solution of (8), where $x_{0}=u_{0}, \psi\left(x_{0}\right)=v_{0}$.
By 3) $v^{\prime}(u)=g(u, v(u))>f\left(u, y_{1}(u)\right)-f\left(u, y_{2}(u)\right)=y_{1}{ }^{\prime}(u)-y_{2}{ }^{\prime}(u)=\psi^{\prime}(u)$. By 2) $v(\varepsilon)>\psi(\varepsilon)$ for a sufficiently small ε. From $v\left(u_{0}\right)=v_{0}=\psi\left(u_{0}\right)$, we must have a point $\bar{u}, \bar{u} \leqq u_{0}$, such as $v(\bar{u})=\psi(\bar{u})$ and $v(\bar{u}-\delta)>\psi(\bar{u}-\delta)$.
Thus $\lim _{\delta=0} \frac{v(\bar{u})-v(\bar{u}-\delta)}{\delta}=v^{\prime}(\bar{u}) \leqq \psi^{\prime}(\bar{u})=\lim _{\delta=0} \frac{\psi(\bar{u})-\psi(\bar{u}-\delta)}{\delta}$, which contradicts $v^{\prime}(u)>\psi^{\prime}(u)$.

This Iyanaga's criterion is of very general character, from which all the sufficient conditions above cited can be deduced. Here I will give some new particular conditions, which seem not without interest.

Theorem: For the uniqueness of the solution of (1) each of the following conditions is sufficient.

1) Montel, Bull. Scie. Math. France 50 (1926) 215.
2) This will appear in Japanese Jour. of Math. 5 (1928).
[Vol. 4,
Condition I. ${ }^{1)}$

$$
\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right|<(1+\varepsilon(x)) \frac{\left|y_{1}-y_{2}\right|}{x}, \text { where } \varepsilon(x)>0
$$

and $\lim _{x=0} \int_{\delta}^{x} \frac{\varepsilon(x)}{x} d x>-M, 0<M<\infty, \delta>0$.
Condition II. ${ }^{2}$

$$
\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right|<\alpha \frac{\left|y_{1}-y_{2}\right|}{x}+\beta\left|y_{1}-y_{2}\right| \log \frac{1}{\left|y_{1}-y_{2}\right|}
$$

$0 \leqq \alpha<1, \quad 0 \leqq \beta$.

$$
\begin{aligned}
& \text { Condition III. }{ }^{3} \text {) } \\
& \qquad\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right|<\frac{\left|y_{1}-y_{2}\right|}{x} \frac{\left|\log \frac{1}{\left|y_{1}-y_{2}\right|}\right|^{l}}{\left|\log \frac{1}{x}\right|^{k}}, 0<l<k, l \leqq 1 .
\end{aligned}
$$

Proof. For the proof of Cond. I we may apply Iyanaga's criterion and consider the differential equation

$$
\begin{equation*}
\frac{d v}{d u}=(1+\varepsilon(u)) \frac{v}{u}=g(u, v) \tag{9}
\end{equation*}
$$

and put an indefinite integral $\int \frac{\varepsilon(u)}{u} d u=I(u)$.
The general solution (9) is $v=u e^{C+I(u)}, C$ being an integrationconstant. By $I(u)>-M$ we have for any $C \neq 0, \neq \infty$,

$$
\lim _{u=0} \frac{d v}{d u}=e^{C+I(u)}+\varepsilon(u) e^{C+I(u)}>0 .
$$

Hence Cond. I is proved.
For the proof of Cond. II we consider

$$
\begin{equation*}
\frac{d v}{d u}=\alpha \frac{v}{u}-\beta v \log v \tag{10}
\end{equation*}
$$

The general solution of (10) is (putting an indefinite integral $\int \frac{e^{\beta u}}{u} d u$ $=G(u)), v=e^{\alpha e^{-\beta} u} G(u)+C e^{-\beta u}$.

On such curves $v(u, C)$ we have

$$
\log \frac{d v}{d u}=\alpha e^{-\beta u} G(u)+C e^{-\beta u}+\log \left(-\alpha \beta e^{-\beta u} G(u)+\frac{\alpha}{u}-\beta C e^{-\beta u}\right)
$$

1) Compare with (6) and (7).
2) Compare with (2) and (3).
3) From Cond. III we can obtain a sharper condition than Cond. I and (6), for example, for $y \leqq x^{(-\log x)^{m}}, m>\frac{k-l}{l}$, Cond. III and for $y>x^{(-\log x)^{m}}$ Cond. I.

$$
=\alpha e^{-\beta u} G(u)+\log \frac{1}{u}+O(1)
$$

Putting $a=\frac{1}{1+\gamma}, \gamma>0$, and choosing $\varepsilon<\gamma$ and then $\delta(\varepsilon)$ so that

$$
\log \frac{\delta(\varepsilon)}{u}<G(\delta(\varepsilon))-G(u)<(1+\varepsilon) \log \frac{\delta(\varepsilon)}{u}
$$

we have

$$
\log \frac{d v}{d u}=\left(1-\frac{1+\varepsilon}{1+\gamma} e^{-\beta u}\right) \log \frac{1}{u}+O(1) \rightarrow+\infty .
$$

Hence

$$
\lim _{u=0} \frac{d v}{d u}=+\infty .
$$

For the proof of Cond. III we consider

$$
\begin{equation*}
\frac{d v}{d u}=\frac{v}{u} \frac{(-\log v)^{l}}{(-\log u)^{k}} \tag{11}
\end{equation*}
$$

The general solution of (11) is, for $0<l<k<1$,

$$
v=e^{-\left\{\frac{1-l}{1-k}(-\log u)^{1-k}+C\right\}^{\frac{1}{1-l}}}
$$

On such curves $v(u, C)$ we have by $l<k$

$$
\begin{gathered}
\log \frac{d v}{d u}=-\left\{\frac{1-l}{1-k}(-\log u)^{1-k}+C\right\}^{\frac{1}{1-l}}+\log (-\log u)^{-k} \\
+\log \left\{\frac{1-l}{1-k}(-\log u)^{1-k}+C\right\}^{\frac{l}{1-l}}+\log \frac{1}{u} \rightarrow+\infty
\end{gathered}
$$

Hence

$$
\lim _{u=0} \frac{d v}{d u}=+\infty
$$

Similarly for $l<k=1$ and $1=l<k$.
Remark: During the preparation for this paper I was told that Mr. Fukuhara ${ }^{1)}$ had also given a sufficient condition

$$
\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right|<k(x)\left|y_{1}-y_{2}\right|, \text { where } \lim x e^{-\int_{\delta}^{x} k(x) d x}<M
$$

which is identical with Cond. I, for, putting $k(x)=\frac{1+\varepsilon(x)}{x}$ we have $\int \frac{\varepsilon(x)}{x} d x>-M$, and conversely, putting $\frac{\varepsilon(x)+1}{x}=k(x)$, we have $\lim _{x=0} x e^{-\int k(x) d x}<M$.

1) This will appear in Japanese Jour. of Math. 5 (1928).

[^0]: 1) Osgood, Monatshefte für Math. und Phys. 9 (1898) 331.
 2) Rosenblatt, Arkiv för Mat. Astr. och Fys. 5 (1909) 2, 1.
 3) Nagumo, Japanese Jour. of Math. 3 (1926) 107.
 4) Nagumo, Japanese Jour. of Math. 4 (1927) 307.
 5) Perron, Math. Zeitschr. 28 (1928) 216.
 6) Perron. ibid.
