On Sufficient Conditions for the Uniqueness of **97** the Solution of $\frac{dy}{dx} = f(x, y)$.

By Tatsujirô SHIMIZU. Mathematical Institute, Tokyo Imperial University. (Rec. July 4, 1928. Comm. by T. TAKAGI, M.I.A., July 12, 1928.)

We consider the differential equation

$$\frac{dy}{dx} = f(x, y) , \qquad (1)$$

where f(x, y) is a continuos function of x and y in the domain D $(0 \le x \le a, |y| \le b)$. The equation (1) has always at least an integral curve which passes through x=0, y=0. For the uniqueness of the integral curve of (1) many sufficient conditions are known. Besides the well-known Lipschitz's condition $|f(x, y_1) - f(x, y_2)| < K |y_1 - y_2|$, a sufficient condition

$$|f(x, y_1) - f(x, y_2)| < K |y_1 - y_2| \log \frac{1}{|y_1 - y_2|}$$
(2)

or more generally

$$|f(x, y_1) - f(x, y_2)| < \varphi(|y_1 - y_2|), \text{ where } \lim_{y \to 0} \int_{\delta}^{y} \frac{dy}{\varphi(y)} = -\infty, (3)$$

was given by Osgood,¹⁾ and another condition

$$|f(x, y_1) - f(x, y_2)| < k \frac{|y_1 - y_2|}{x}, \ 0 \leq k < 1,$$
 (4)

by Rosenblatt.²⁾

Recently Nagumo³⁾ without knowing Rosenblatt's condition (4) has discovered a more general condition

$$|f(x, y_1)-f(x, y_2)| < \frac{|y_1-y_2|}{x}$$
. (5)

Nagumo⁴) and Perron⁵) have extended the condition (5) to

$$|f(x, y_1) - f(x, y_2)| \le \frac{|y_1 - y_2|}{x}$$
 (6)

Further Perron⁶ has shown by simple examples that

Osgood, Monatshefte für Math. und Phys. 9 (1898) 331. 1)

Cospool, Mohatsherte in Math. and Thys. 5 (1909) 201.
 Rosenblatt, Arkiv för Mat. Astr. och Fys. 5 (1909) 2, 1.
 Nagumo, Japanese Jour. of Math. 3 (1926) 107.
 Nagumo, Japanese Jour. of Math. 4 (1927) 307.
 Perron, Math. Zeitschr. 28 (1928) 216.
 Perron. ibid.

No. 7.] On Sufficient Conditions for the Uniqueness of the Solution.

$$|f(x, y_1) - f(x, y_2)| < (1 + \varepsilon) \frac{|y_1 - y_2|}{x}, \quad \varepsilon > 0$$

$$(7)$$

can not be a sufficient condition.

On the other hand Montel¹⁾ has given a general condition which implies (2), (3) and other conditions given by Tonelli and Bompiani. Recently Iyanaga²⁾ discovered a more general criterion for sufficient conditions which can be expressed as follows: In order that the equation (1) has in D a unique solution which passes through x=0, y=0 it is sufficient that we can find a differential equation

$$\frac{dv}{du} = g(u, v), \qquad (8)$$

satisfying the following conditions:

1) g(u, v) is defined in the domain D^* $(0 \le u \le a, 0 \le v \le 2b)$,

2) the equation (8) has at least one integral curve $v(u) = v(u, u_0, v_0)$ through any point (u_0, v_0) in $0 < u_0 \le a$, $0 < v_0 \le 2b$, so that

2 a) v(u) exists for $0 < u \leq u_0$ and $0 \leq v(u) \leq 2b$,

and 2 b) $\lim_{u=0} v(u) > 0$ or $\lim_{u=0} v(u) = 0$ and $\lim_{u=0} \frac{dv}{du} > 0$,

3) For arbitrary y_1 and y_2 ($y_1 > y_2$) in D we have the inequality

$$g(x, y_1-y_2) > f(x, y_1)-f(x, y_2)$$
.

The proof can be obtained as follows: Let $y_1(x)$ and $y_2(x)$ be two different solutions of (1) with $y_1(0) = y_2(0) = 0$, then putting $y_1(x) - y_2(x) = \psi(x)$ we have $\psi(0) = 0$ and $\psi'(0) = 0$. Now suppose that there exist a point $x_0, 0 < x_0 \le a$, at which $\psi(x_0) > 0$, and let $v(u) = v(u, u_0, v_0)$ be a solution of (8), where $x_0 = u_0, \psi(x_0) = v_0$.

By 3) $v'(u) = g(u, v(u)) > f(u, y_1(u)) - f(u, y_2(u)) = y_1'(u) - y_2'(u) = \psi'(u)$. By 2) $v(\varepsilon) > \psi(\varepsilon)$ for a sufficiently small ε . From $v(u_0) = v_0 = \psi(u_0)$, we must have a point $\overline{u}, \overline{u} \leq u_0$, such as $v(\overline{u}) = \psi(\overline{u})$ and $v(\overline{u} - \delta) > \psi(\overline{u} - \delta)$.

Thus
$$\lim_{\delta \to 0} \frac{v(\bar{u}) - v(\bar{u} - \delta)}{\delta} = v'(\bar{u}) \leq \psi'(\bar{u}) = \lim_{\delta \to 0} \frac{\psi(\bar{u}) - \psi(\bar{u} - \delta)}{\delta}$$

which contradicts $v'(u) > \psi'(u)$.

This Iyanaga's criterion is of very general character, from which all the sufficient conditions above cited can be deduced. Here I will give some new particular conditions, which seem not without interest.

Theorem: For the uniqueness of the solution of (1) each of the following conditions is sufficient.

- 1) Montel, Bull. Scie. Math. France 50 (1926) 215.
- 2) This will appear in Japanese Jour. of Math. 5 (1928).

327

Condition I.¹⁾

$$|f(x, y_1) - f(x, y_2)| < (1 + \varepsilon(x)) \frac{|y_1 - y_2|}{x}, \text{ where } \varepsilon(x) > 0$$

and
$$\lim_{x\to 0}\int_{\delta}^{\infty}\frac{\varepsilon(x)}{x}dx > -M$$
, $0 < M < \infty$, $\delta > 0$.

Condition II.2)

$$|f(x, y_1) - f(x, y_2)| < \alpha \frac{|y_1 - y_2|}{x} + \beta |y_1 - y_2| \log \frac{1}{|y_1 - y_2|}$$

 $0 \le \alpha < 1, \quad 0 \le \beta.$

Proof. For the proof of Cond. I we may apply Iyanaga's criterion and consider the differential equation

$$\frac{dv}{du} = (1 + \varepsilon(u)) \cdot \frac{v}{u} = g(u, v)$$
(9)

and put an indefinite integral $\int \frac{\epsilon(u)}{u} du = I(u)$.

The general solution (9) is $v = u e^{C + I(u)}$, C being an integrationconstant. By I(u) > -M we have for any $C \neq 0, \neq \infty$,

$$\lim_{u=0}\frac{dv}{du}=e^{C+I(u)}+\varepsilon(u)e^{C+I(u)}>0.$$

Hence Cond. I is proved.

For the proof of Cond. II we consider

$$\frac{dv}{du} = a \frac{v}{u} - \beta v \log v.$$
 (10)

The general solution of (10) is (putting an indefinite integral $\int \frac{e^{\beta u}}{u} du$

$$=G(u) \Big), \quad v=e^{\alpha e^{-\beta u}}G(u)+C e^{-\beta u}.$$

On such curves v(u, C) we have

$$\log \frac{dv}{du} = a e^{-\beta u} G(u) + C e^{-\beta u} + \log \left(-a\beta e^{-\beta u} G(u) + \frac{a}{u} - \beta C e^{-\beta u} \right)$$

- 1) Compare with (6) and (7).

2) Compare with (2) and (3). 3) From Cond. III we can obtain a sharper condition than Cond. I and (6), for example, for $y \le x^{(-\log x)^m}$, $m > \frac{k-l}{l}$, Cond. III and for $y > x^{(-\log x)^m}$ Cond. I.

328

No. 7.] On Sufficient Conditions for the Uniqueness of the Solution.

$$= \alpha e^{-\beta u} G(u) + \log \frac{1}{u} + O(1) .$$

Putting $\alpha = \frac{1}{1+\gamma}$, $\gamma > 0$, and choosing $\varepsilon < \gamma$ and then $\delta(\varepsilon)$ so that

$$\log \frac{\delta(\varepsilon)}{u} < G(\delta(\varepsilon)) - G(u) < (1+\varepsilon) \log \frac{\delta(\varepsilon)}{u}$$

we have

$$\log \frac{dv}{du} = \left(1 - \frac{1 + \varepsilon}{1 + \gamma} e^{-\beta u}\right) \log \frac{1}{u} + O(1) \to +\infty .$$

 $\lim_{u=0}\frac{dv}{du}=+\infty.$

Hence

For the proof of Cond. III we consider

$$\frac{dv}{du} = \frac{v}{u} \frac{(-\log v)^l}{(-\log u)^k}.$$
(11)

The general solution of (11) is, for 0 < l < k < 1,

$$v = e^{-\left\{\frac{1-l}{1-k}(-\log u)^{1-k}+C\right\}^{\frac{1}{1-l}}}$$
.

On such curves v(u, C) we have by l < k

$$\log \frac{dv}{du} = -\left\{\frac{1-l}{1-k}(-\log u)^{1-k} + C\right\}^{\frac{1}{1-l}} + \log(-\log u)^{-k} + \log\left\{\frac{1-l}{1-k}(-\log u)^{1-k} + C\right\}^{\frac{l}{1-l}} + \log\frac{1}{u} \to +\infty.$$

Hence

$$\lim_{u=0}\frac{dv}{du}=+\infty.$$

Similarly for l < k=1 and 1=l < k.

Remark: During the preparation for this paper I was told that Mr. Fukuhara¹⁾ had also given a sufficient condition

 $|f(x, y_1) - f(x, y_2)| < k(x) |y_1 - y_2|$, where $\lim x e^{-\int_{\delta}^{x} k(x) dx} < M$,

which is identical with Cond. I, for, putting $k(x) = \frac{1+\varepsilon(x)}{x}$ we have $\int \frac{\varepsilon(x)}{x} dx > -M$, and conversely, putting $\frac{\varepsilon(x)+1}{x} = k(x)$, we have $\lim_{x\to 0} x e^{-\int k(x)dx} < M$.

1) This will appear in Japanese Jour. of Math. 5 (1928).

329