133. On the Theory of Schlicht Functions.

By Kien Kwong Chen.
University of Chekiang, Hangchow, China.
(Comm. by M. Fujiwara, m.I.A., Nov. 13, 1933.)

1. Let the function
(1)

$$
f(z)=z+a_{2} z^{2}+\cdots \cdots
$$

be regular and schlicht in $|z|<1$. It is well known that $\left|a_{n}\right|<e n$. Recently Littlewood and Paley ${ }^{1)}$ show that the coefficients a_{n} are uniformly bounded, if $f(z)$ be odd. We can, however, proceed one step further, and prove that
(2)

$$
\left|a_{n}\right|<e^{2},
$$

for the odd schlicht function.
If the function (1) satisfies the relation
(3)

$$
f(\omega z)=\omega f(z),
$$

where ω denotes any root of the equation $x^{k}=1, k$ being a positive integer, we say, for convenience, that $f(z)$ is a function of the class k. Using this definition, the results stated above may be expressed as follows: if $f(z)$ is a function of the class k, then, for $k=1,2$, we have

$$
\begin{equation*}
n^{\frac{k-2}{k}}\left|a_{n}\right|<A \tag{4}
\end{equation*}
$$

The question arises whether the inequality (4) holds good also for $k>2$. The answer is affirmative in the case $k=3$, and the relation

$$
\begin{equation*}
\sqrt[3]{n}\left|a_{n}\right|<e^{3} \tag{5}
\end{equation*}
$$

can be demonstrated. Thus we can state the following theorem:
If $f(z)=z+\sum_{2}^{\infty} a_{n} z^{n}$ is a function of the class $k(k=1,2,3)$, then

$$
\begin{equation*}
n^{\frac{k-2}{k}}\left|a_{n}\right|<e^{k} . \tag{6}
\end{equation*}
$$

In general, if the function $z f^{\prime}(z)$ is p-valent, i.e. the equation

$$
z f^{\prime}(z)=a
$$

has at most p solutions in $|z|<1$, for every a, we can establish the inequality

$$
\begin{equation*}
n^{\frac{k-2}{k}}\left|a_{n}\right|<p e^{\frac{1}{k}} \tag{7}
\end{equation*}
$$

1) J. E. Littlewood and R.E. A. C. Paley: Journal of London Math. Soc. 7 (1933). See also E. Landau: Über ungerade schlichte Funktionen, Math. Zeits. 37 (1933).
where a_{n} denotes the coefficients of the function $f(z)$ of the class k. The index $(k-2) / k$ is the best possible one, as shown by the function

$$
f(z)=\frac{z}{\left(1-z^{k}\right)^{2 / k}}=z+\cdots \cdots
$$

2. To prove the relations (6) and (7), the following theorem is useful. If $f_{k}(z)$ is a function of the class k, then

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f_{k}\left(r e^{i \theta}\right)\right|^{\alpha p} d \theta \leqq A_{p} r^{\alpha p}\left(1-r^{k}\right)^{2 \alpha(1-p) / k} \tag{8}
\end{equation*}
$$

where $0 \leqq r<1, \quad 0 \leqq \alpha \leqq k / 2, \quad p>1$,

$$
A_{p}=\operatorname{Max}(1, p /(2 p-2))
$$

Putting $k=1, a=1 / 2, p=2 \lambda(2 \lambda>1),(8)$ is reduced to an inequality of Littlewood. ${ }^{1)}$

By means of (8), we can establish the relation

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f_{k}^{\prime}\left(r e^{i \theta}\right)\right|^{\lambda} d \theta \leqq A(k, \lambda)\left(1+r^{k}\right)^{\lambda}\left(1-r^{k}\right)^{1-\lambda-2 \lambda / k}, \tag{9}
\end{equation*}
$$

where $0 \leqq r<1,2 \lambda>k, \quad A(k, \lambda)=\operatorname{Max}(1, \lambda(2 \lambda-k))$.
As further applications of (8), we can show that, if

$$
\begin{aligned}
& f_{k}(z)=\sum a_{n} z^{n}\left(a_{1}=1\right), \\
& \sum_{m=1}^{n}\left|a_{m}\right|^{2}<e^{2} r^{4 / k-1} \quad(\text { for } \quad k=1,2,3), \\
& \sum_{m=1}^{n}\left|a_{m}\right|^{2}<e \log 2 n \quad(\text { for } \quad k=4), \\
& \sum_{m=1}^{\infty}\left|a_{m}\right|^{2}<k^{2} /(k-2)(k-4) \quad(\text { for } \quad k>4) .
\end{aligned}
$$

3. The classification of the regular schlicht functions in the unit circle, in the above manner, can be employed to establish a theorem concerning schlicht character of a function. Let $f(z)$ be an analytic function. If $f(z)$ exists and does not vanish, then $f(z)$ is regular and schlicht in a circle C about z_{0}. The question arises how large the circle C can be taken in order to keep the above properties. Certainly, C cannot contain the greatest circle C^{\prime} about z_{0} in which $f^{\prime}(z)$ exists and is different from zero. On the contrary, $f(z)$ may not be schlicht in C_{0}^{\prime}. For instance, although the derivative of the function e^{z} does not vanish in the whole plane, yet e^{z} is not schlicht in any circle with the radius greater than π. We can, however, prove the following theorem: if $f^{\prime}(z)$ exists and does not vanish in the cirlce C with the center $z_{0}, f(z)$

[^0]is schlicht in C, provided that
\[

$$
\begin{equation*}
\left|\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}-f^{\prime}\left(z_{0}\right)\right|<\left|f^{\prime}\left(z_{0}\right)\right| \tag{10}
\end{equation*}
$$

\]

at every inner point z of C. Moreover, if the condition (10) is replaced by

$$
\begin{equation*}
\left|\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}-f^{\prime}\left(z_{0}\right)\right|<M\left|f^{\prime}\left(z_{0}\right)\right| \tag{11}
\end{equation*}
$$

where M denotes a constant >1.12, then the statement is false.
In fact, the function

$$
f(z)=z+z^{2}+\frac{z^{3}}{3}
$$

is not schlicht in $|z|<\sqrt{3} / 2+\varepsilon=\rho \quad(\varepsilon>0, \rho<1)$, since

$$
f\left(\frac{\sqrt{3}}{2} e^{5 \pi i / 6}\right)=f\left(\frac{\sqrt{3}}{2} e^{-5 \pi i / 6}\right)
$$

But, when $|z| \leqq \rho$, we have

$$
f^{\prime}(z)=1+2 z+z^{2} \neq 0
$$

$$
\left|\frac{f(z)-f(0)}{z-0}-f^{\prime}(0)\right|=\left|z+\frac{z^{2}}{3}\right|<\frac{\sqrt{3}}{2}+\frac{1}{4}+\varepsilon<1.12\left|f^{\prime}(0)\right|
$$

if ε is sufficiently small.
It is probable that the multiplier M in (11), in order to keep the theorem well, cannot be greater than unity.

[^0]: 1) J. E. Littlewood: Proc. of London Math. Soc. (2), 23 (1925).
