55. Some Intrinsic Derivations in a Generalized Space.

By Akitsugu Kawaguchi.
Mathematical Institute, Hokkaido Imperial University, Sapporo.

(Comm. by S. Kakeya, m.I.A., June 12, 1936.)
In their very interesting papers H. V. Craig ${ }^{1)}$ and J. L. Synge ${ }^{2)}$ defined a Kawaguchi space and stated many intrinsic vectors and derivatives in this space. I shall introduce in this paper some another intrinsic derivations in the same space, which do not take place in the space of order one.

1. In a Kawaguchi space of order m and of dimensions n the length of a curve $x^{i}=x^{i}(t)(i=1,2, \ldots \ldots, n)$ is defined to be the invariant

$$
s=\int_{t_{0}}^{t} F\left(t, x^{(0) i}, \ldots \ldots, x^{(m) i}\right) d t
$$

where

$$
x^{(a) i}=\frac{d^{a} x^{i}}{d t^{a}}, \quad x^{(0) i}=x^{i} .
$$

We shall adopt the notations

$$
\begin{equation*}
F_{(\beta) i}=\frac{\partial F}{\partial x^{(\beta) i}}, \quad F_{(\dot{\beta}) i}^{\cdot(\alpha)}=\frac{d^{a}}{d t^{a}} \frac{\partial F}{\partial x^{(\beta) i}}, \tag{1}
\end{equation*}
$$

then it was proved by Synge ${ }^{2)}$ that

$$
\begin{equation*}
\left.\stackrel{a}{E_{i}}=\sum_{\beta=0}^{m}(-1)^{\beta}\left({ }_{a}^{\beta}\right) F_{(\beta)}^{(\beta)} \stackrel{(\beta}{i}-\alpha\right) \quad(\alpha=0,1,2, \ldots \ldots, m) \tag{2}
\end{equation*}
$$

are the components of a covariant vector, which we shall call the Synge vector of α-th kind. The Synge vector of zeroth kind is the Euler vector.
2. Let T_{i} be any covariant vector ${ }^{3)}$ of order p, i.e. depended upon $t, x^{(0) i}, \ldots \ldots, x^{(p) i}$ and X^{i} a contravariant vector of any order, then we have the following covariant derivation along a curve for the vector X^{i} refered to the vector T_{i}.

Theorem. The n quantities

$$
\begin{equation*}
{ }^{p-\rho} D_{i j}(T) X^{j}=\sum_{a=\rho}^{p}\left({ }_{\rho}^{\alpha}\right) T_{i(\alpha) j} X^{j(\alpha-\rho)} \quad(\rho=1,2, \ldots \ldots ., p) \tag{I}
\end{equation*}
$$

are the components of a covariant vector.
Proof. A point transformation $y^{i}=y^{i}\left(x^{j}\right)$ gives rise to the relations

$$
\begin{equation*}
\frac{\partial y^{(a) i}}{\partial x^{(\beta) j}}=\binom{a}{\beta} P_{j}^{i(a-\beta)}, \tag{3}
\end{equation*}
$$

where

$$
P_{j}^{i}=\frac{\partial y^{i}}{\partial x^{j}}, \quad Q_{j}^{i}=\frac{\partial x^{i}}{\partial y^{j}} .
$$

[^0]From (3) it follows

$$
\bar{T}_{i(\alpha) j}=Q_{i}^{k} \sum_{\beta=\alpha}^{p} T_{k(\beta) l} \frac{\partial x^{(\beta) l}}{\partial y^{(\alpha) j}}=Q_{i}^{k} \sum_{\beta=a}^{p} T_{k(\beta) l(\alpha)}^{(\beta)} Q_{j}^{l(\beta-\alpha)} \quad(\alpha>0) .
$$

\bar{T}_{i} denotes the transformed T_{i} and $\bar{T}_{i(\beta) j}=\partial \bar{T}_{i} / \partial y^{(\beta) j}$. In another hand we have

$$
\bar{X}^{j(a-\rho)}=\left(P_{k}^{j} X^{k}\right)^{(a-\rho)}=\sum_{r=0}^{a-\rho}\binom{a-\rho)}{r} P_{k}^{j(a-\rho-r)} X^{k(r)},
$$

hence

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{D}_{i j}^{p-\rho}(\bar{T}) \bar{X}^{j}=Q_{i}^{k} \sum_{a=\rho}^{p} \sum_{\beta=a}^{p} \sum_{r=0}^{a-\rho}\binom{a}{\rho}\binom{\beta}{\alpha}\binom{a-\rho}{r} Q_{j}^{l(\beta-a)} P_{h}^{j(\alpha-\rho-\gamma)} T_{k(\beta) l} X^{h(r)} \\
& =Q_{i}^{k} \sum_{\beta=\rho}^{p} \sum_{\gamma=0}^{\beta-\rho} \sum_{a=\rho+r}^{\beta}\left({ }_{r}^{\beta}\right)\left({ }_{\rho}^{\beta-r}\right)\left({ }_{\beta}^{\beta-\rho-\gamma}{ }_{\beta}^{\rho-r}\right) Q_{j}^{L(\beta-a)} P_{h}^{j(\alpha-\rho-r)} T_{k(\beta) l} X^{h(r)} \\
& =Q_{i}^{k} \sum_{\beta=\rho}^{p} \sum_{r=0}^{\beta-\rho}\left(\frac{\beta}{\gamma}\right)\left(\begin{array}{l}
\beta-r) \\
\rho
\end{array} T_{k(\beta) l} X^{h(r)} \sum_{\delta=0}^{\beta-\rho-\gamma}\left({ }_{j}^{\beta-\rho-\gamma}\right) Q_{j}^{L(\delta)} P_{h}^{j(\beta-\rho-r-\delta)}\right. \\
& =Q_{i}^{k} \sum_{\beta=\rho}^{p}\left({ }_{\rho}^{\beta}\right) T_{k(\beta) h} X^{h(\beta-\rho)} \\
& =Q_{i}^{k} \stackrel{p-\rho}{D_{k j}}(T) X^{j} \text {, }
\end{aligned}
$$

since

$$
0=\frac{d^{\tau}}{d t^{\tau}}\left(Q_{j}^{i} P_{k}^{j}\right)=\sum_{\delta=0}^{\tau}\left({ }_{\delta}^{\tau}\right) Q_{j}^{i(\delta)} P_{k}^{j(\tau-\delta)} \quad \text { for } \quad \tau \geqq 1
$$

Thus the theorem is proved.
For $\rho=p$ (I) gives us

$$
\stackrel{0}{D}_{i j}(T) X^{j}=T_{i(p) j} X^{j}
$$

whose covariant property is evident, and for $\rho=p-1$

$$
\stackrel{1}{D}_{i j}(T) X^{j}=p T_{i(p) j} \frac{d X^{j}}{d t}+T_{i(p-1) j} X^{j}
$$

which may be of interest.
3. Employing any one Synge vector, for example, of a-th kind, whose order is $2 m-\alpha$, as the vector T_{i}, we have the intrinsic derivation along a curve for the vector X^{i} :

$$
\begin{equation*}
\underset{D_{i j}}{2 m-a-\rho}\left(E^{a}\right)^{j}=\sum_{\beta=\rho}^{2 m-a}\binom{\beta}{\rho} E_{i(\beta) j}^{a} X^{j(\beta-\rho)} \tag{II}
\end{equation*}
$$

Thus we have some new vectors from a vector by these derivations and in general there are no algebraic relations among them. If one needs the contravariant derived vectors, the tensor

$$
g_{i k}=F F_{(m) i(m) k}+\stackrel{1}{E}_{i} E_{k}^{1}
$$

whose determinant does not vanish identically in general although $\int F d t$ would be invariant under transformation of $t{ }^{1)}$ enables us to get those ones, in fact

$$
g^{i k} \stackrel{2 m-a-\rho}{D_{i j}}(\stackrel{a}{E}) X^{j} \quad \text { or } \stackrel{2 m-1-\rho}{D_{\cdot j}^{i}}\left(\stackrel{a}{E^{*}}\right) X^{j}
$$

1) See H. V. Craig : loc. cit., p. 461. He put $g_{i k}=F_{(m) i(m) k}+\frac{1}{E_{i}} \stackrel{1}{E}_{k}$.
are the components of the contravariant derived vectors, where

$$
g^{i k} g_{k l}=\delta_{l}^{i} \quad \text { and } \quad \stackrel{a}{E^{* i}}=g^{i k} \stackrel{a}{E_{k}}
$$

4. As $\stackrel{1}{E}_{j} X^{j}$ is an invariant,

$$
\begin{equation*}
{ }_{\substack{2 m-a-\rho \\ \Delta_{i j}}} X^{j}=\frac{1}{E_{i}}\left(E_{j} X^{j}\right)^{(2 m-a-\rho)} \tag{III}
\end{equation*}
$$

are the components of a vector. Since the coefficients of the highest derivatives $X^{j(2 m-\alpha-\rho)}$ in the vector $\left(F^{2 m-a-\rho} D_{i j}\left(E^{a}\right)+{ }^{2 m-a-\rho} \Delta_{i j}\right) X^{j}$ are nothing but $g_{i j}$, we have

$$
\begin{align*}
\frac{2 m-\alpha-\rho}{\delta-\rho}\left(E^{\alpha}\right) X^{k} & =g^{k i}\left(F^{2 m-a-\rho} D_{i j}\left(\frac{\alpha}{E}\right)+{ }^{2 m-a-\rho} \Delta_{i j}\right) X^{j} \tag{IV}\\
& =X^{k(2 m-\alpha-\rho)}+{ }_{\Gamma k}^{2 m-a-\rho}(X),
\end{align*}
$$

where ${ }^{2 m-a-\rho} \Gamma_{k}(X)$ do not contain the highest derivatives $X^{j(2 m-a-\rho)}$ and are linear with regard to X^{j} and their another derivatives. Especially for $2 m-\alpha-\rho=1$ the last equations reduce to

$$
\begin{equation*}
\stackrel{1}{\delta}(E)_{\underline{a}}^{(E) X^{k}}=\frac{d X^{k}}{d t}+\Gamma_{j}^{k}(E) X^{j}, \tag{V}
\end{equation*}
$$

where $\Gamma_{j}^{k}(E)$ are independent of X^{j} and have the form

$$
\begin{aligned}
& \Gamma_{j}^{k}(\underset{E}{a})=g^{k i}\left(F \stackrel{a}{E_{i 22 m-a-1) j}}+\stackrel{1}{E_{i}}{ }_{i}^{E_{j}^{-(1)}}\right)
\end{aligned}
$$

whose order is at most $2 m$.
On account of (V) we can define a parallelism along a curve, i. e. two consecutive vectors X^{i} and $X^{i}+d X^{i}$ are parallel, if the equations

$$
\frac{d X^{k}}{d t}+\Gamma_{j}^{k}\left(\frac{a}{E}\right) X^{j}=0
$$

hold good.
5. In conclusion we shall apply the covariant derivations (I) to a geometry of generalized path

$$
\Phi^{i} \equiv x^{i(p)}+\varphi^{i}\left(t, x^{(0) j}, \ldots \ldots, x^{(p-1) j}\right)=0 .
$$

As the left-hand side Φ^{i} of this equation has vector property, we may take it as the contravariant vector T^{i}, then we have from (I)

$$
{ }^{p} \bar{D}_{: j}^{p}(\phi) X^{j}=\left({ }_{p}^{p}\right) X^{i(p-\rho)}+\sum_{\alpha=\rho}^{p-1}\left({ }_{p}^{a}\right) \varphi_{\cdot(\alpha) j}^{i} X^{j(\alpha-\rho)}
$$

or dividing with a constant $\binom{p}{p}$

$$
\begin{equation*}
\left.{ }_{h \cdot \rho}^{p-\rho}(\phi) X^{j}=X^{i(p-\rho)}+\left({ }_{\rho}^{p}\right)^{-1} \sum_{a=\rho}^{p-1}{ }_{\rho}^{a}\right) \varphi_{\cdot(\alpha) j}^{i} X^{j \alpha-\rho)} . \tag{VI}
\end{equation*}
$$

Specially for $\rho=p-1$ (VI) becomes

$$
{ }_{\Delta \cdot j}^{i}(\Phi) X^{j}=\frac{d X^{i}}{d t}+\frac{1}{p} \varphi_{(p-1) j}^{i} X^{j},
$$

which was mentioned by D. D. Kosambi' ${ }^{1 /}$ already.

[^1]
[^0]: 1) H. V. Craig: On a generalized tangent vector, American Journal of Mathematics, 57 (1935), 456-462.
 2) J. L. Synge: Some intrinsic and derived vectors in a Kawagachi space, ibid., 679-691.
 3) We can prove the analogous result, taking a contravariant vector $T \boldsymbol{T i}$ instead of the covariant vector $\boldsymbol{T}_{\boldsymbol{i}}$.
[^1]: 1) D. D. Kosambi: An affine calculus of variations, Proc. of the Indian Academy of Sciences, 2 (1935), 333-335.
