111. A Note on the Continuous Representation of Topological Groups.

By Kôsaku YOSIDA.

Mathematical Institute, Osaka Imperial University. (Comm. by T. YOSIE, M.I.A., Dec. 12, 1936.)

§ I. In a recent paper,¹⁾ the author treated the group \mathfrak{D} embedded in the *metrical complete ring* \mathfrak{R} . Such a group \mathfrak{D} is, by [I], a *Lie* group (as defined in [I]²⁾) if and only if \mathfrak{D} is locally compact.

In another paper,³⁾ I obtained a result saying that, if \mathfrak{D} is continuously homomorphic to a connected and locally bicompact topological group \mathfrak{G} (without any countability axiom), then \mathfrak{D} is a Lie representation (defined in [II]).

A Lie representation \mathfrak{D} is not necessarily a Lie group as defined in [I] (see [II]), though the *infinitesimal operators* of \mathfrak{D} obey the customary rule of the ordinary *Lie-ring*, when \mathfrak{G} is a Lie group (see [II]).

However we may add the following remark:

The representation \mathfrak{D} of \mathfrak{G} is a Lie group (as defined in [I]) if and only if the homomorphic mapping $\mathfrak{G} \to \mathfrak{D}$ is open.

Here a continuous mapping is called *open* if the mapped image of any open set is an open set.

Proof. \mathfrak{D} is isomorphic to the quotient group $\mathfrak{G}/\mathfrak{N}$, where \mathfrak{N} is an invariant subgroup closed in \mathfrak{G} . We call any set in $\mathfrak{G}/\mathfrak{N}$ open if and only if it corresponds to an open set in \mathfrak{G} by the homomorphic mapping $\mathfrak{G} \to \mathfrak{G}/\mathfrak{N}$. Then $\mathfrak{G}/\mathfrak{N}$ is connected and locally bicompact with \mathfrak{G} . Thus \mathfrak{D} is continuously isomorphic to $\mathfrak{G}/\mathfrak{N}$ and the mapping $\mathfrak{G} \to \mathfrak{D}$ is open if and only if the mapping $\mathfrak{G}/\mathfrak{N} \to \mathfrak{D}$ is open.

Hence we may- and shall- assume that \mathfrak{D} is continuously isomorphic to \mathfrak{G} .

Thus if the mapping $\mathfrak{G} \to \mathfrak{D}$ is open, \mathfrak{G} and \mathfrak{D} are homeomorphic with each other, and hence \mathfrak{D} is locally bicompact and connected with \mathfrak{G} . This proves the sufficiency of the condition of the remark.

As the group \mathfrak{D} is embedded in \mathfrak{R} , \mathfrak{D} does not contain an arbitrarily small cyclic subgroup (\neq identical group⁴). \mathfrak{G} enjoys the same property, for \mathfrak{D} is continuously isomorphic to \mathfrak{G} . By a theorem due to A. Komatu and S. Kakutani (see [II]) \mathfrak{G} satisfies the first axiom of countability, since \mathfrak{G} is locally bicompact. Hence \mathfrak{G} is metrisable by a result of S. Kakutani.⁵

4) For the proof see [I].

¹⁾ K. Yosida: On the group embedded in the metrical complete ring, Jap. J. of Math. 13 (1936). This paper will be cited as [I].

²⁾ The condition τ) in the definition of a *Lie group* in [I] is not an essential one, it states that the group is connected. Hence it may be omitted out of the definition.

³⁾ K. Yosida: On the group embedded in the metrical complete ring, II, to appear soon in Jap. J. of Math. This paper will be cited as [II].

⁵⁾ S. Kakutani: Über die Metrisation der topologischen Gruppen, Proc. 12 (1936). Cf. also G. Birkhoff: A note on topological groups, Comp. Math. 3 (1936).

Thus (3) is locally separable and connected. We see that such a group is separable, by applying Schreier's theorem¹) on connected groups.

Hence by H. Freudenthal's² result, the mapping $\mathfrak{G} \to \mathfrak{D}$ is open if \mathfrak{D} is locally compact, for then \mathfrak{D} is a Lie group by [I].

§ II. With regards to the dimension relation by the continuous homomorphic mapping $\mathfrak{G} \to \mathfrak{D}$ we may prove the following remark :

If S is compact and separable,³⁾ we have

(d)
$$\dim \mathfrak{D} \leq \dim \mathfrak{G}$$
,

without assuming the group \mathfrak{D} to be embedded in \mathfrak{R} . It may be any topological group.

Proof. \mathfrak{D} is compact and separable with \mathfrak{G} , and hence the mapping $\mathfrak{G} \to \mathfrak{D}$ is open.⁴ Thus \mathfrak{D} is topologically isomorphic to $\mathfrak{G}/\mathfrak{N}$, where \mathfrak{N} denotes an invariant subgroup closed in \mathfrak{G} .⁵

By a theorem of H. Freudenthal,⁶ there exists a decreasing sequence $\{\mathfrak{H}_m\}$ of closed invariant subgroups in \mathfrak{G} , $\lim_{m \to \infty} \mathfrak{H}_m = e$ (unit element of \mathfrak{G}), such that $\mathfrak{G}/\mathfrak{H}_m$ (m=1, 2, ...) is topologically isomorphic to a compact matrix group (Lie group by [I]). \mathfrak{G} is thus G_n -adic generated⁷ by the sequence $\{\mathfrak{G}/\mathfrak{H}_m\}$, and dim $\mathfrak{G}=\lim \dim \mathfrak{G}/\mathfrak{H}_m$.⁸⁾

As $\mathfrak{H}_m \supseteq \mathfrak{H}_{m+1}$, $\lim \mathfrak{H}_m = e$, it is easy to see that the group $\mathfrak{G}/\mathfrak{N}$ and \mathfrak{N} are G_n -adic generated by the sequences

$$\left\{ \mathfrak{G}/\mathfrak{N}/\mathfrak{N}\mathfrak{H}_m/\mathfrak{N} \right\}$$
 and $\left\{ \mathfrak{N}/\mathfrak{N}V\mathfrak{H}_m \right\}^{\mathfrak{H}}$

respectively. $\Re \mathfrak{H}_m / \mathfrak{H}_m$ is a compact matrix group (Lie group by [I]), since it is a closed invariant subgroup in the compact matrix group $\mathfrak{G}/\mathfrak{H}_m$. Thus the topological isomorphisms

$$\begin{cases} \mathfrak{G}/\mathfrak{N}\mathfrak{H}_m \cong \mathfrak{G}/\mathfrak{H}_m / \mathfrak{N}\mathfrak{H}_m / \mathfrak{H}_m \cong \mathfrak{G}/\mathfrak{N} / \mathfrak{N}\mathfrak{H}_m / \mathfrak{N} \\ \mathfrak{N}\mathfrak{H}_m / \mathfrak{H}_m \cong \mathfrak{N} / \mathfrak{N}V\mathfrak{H}_m^{10)} \end{cases}$$

4) FI, p. 47.

5) FI, p, 49. The topology in quotient group is defined as in § I.

6) H. Freudenthal: Topologische Gruppen mit genügend vielen fastperiodischen Funktionen, Ann. of Math. **37** (1936). This paper will be cited as FII. Cf. also E. R. van Kampen: Almost periodic functions and compact groups, Ann. of Math. **37** (1936).

7) FII, p. 69.

8) FII, p. 71.

9) $\Re \mathfrak{H}$ denotes the set of all the products nh, where $n \in \mathfrak{R}$, $h \in \mathfrak{H}$. $\Re V \mathfrak{H}$ denotes the set of all the elements common to \mathfrak{R} and \mathfrak{H} .

10) FI, p. 50.

¹⁾ O. Schreier: Abstrakte kontinuierliche Gruppen, Hamburg Abh. Math. Sem. 4 (1925).

²⁾ H. Freudenthal: Einige Sätze über topologische Gruppen, Ann. of Math. 37 (1936), p. 47. This paper will be cited as FI.

³⁾ The separability hypothesis may be replaced by the first axiom of countability, for then @ is metrisable by Kakutani's theorem, loc. cit. When @ is locally compact, connected, separable and zero-dimensional, (d) is obtained by H. Freudenthal, loc. cit. p. 51.

show that $\Re/\Re V\mathfrak{H}_m$ and $\mathfrak{G}/\mathfrak{N}\mathfrak{H}_m$ are compact Lie groups, and hence we have¹⁾

$$\dim \mathfrak{G}/\mathfrak{N} = \lim_{m \to \infty} \dim \mathfrak{G}/\mathfrak{N}\mathfrak{H}_m, \qquad \dim \mathfrak{N} = \lim_{m \to \infty} \mathfrak{N}/\mathfrak{N}V\mathfrak{H}_m.$$

By considering the canonical parameters we obtain

$$\dim \mathfrak{G}/\mathfrak{N}\mathfrak{F}_m = \dim \mathfrak{G}/\mathfrak{F}_m/\mathfrak{N}\mathfrak{F}_m/\mathfrak{F}_m = \dim \mathfrak{G}/\mathfrak{F}_m - \dim \mathfrak{N}\mathfrak{F}_m/\mathfrak{F}_m,$$

and thus²⁾

 $(d') \quad \dim \mathfrak{G}/\mathfrak{N} = \lim_{m \to \infty} \dim \mathfrak{G}/\mathfrak{H}_m - \lim_{m \to \infty} \dim \mathfrak{N}/\mathfrak{N}V\mathfrak{H}_m = \dim \mathfrak{G} - \dim \mathfrak{N}.$

This proves (d) by $\mathfrak{D} \cong \mathfrak{G}/\mathfrak{N}$.

Q. E. D.

2) After this paper is completed the author found that (d') was also obtained by van Kampen in somewhat another way. E.R. van Kampen: A note on a theorem by Pontrjagin, Amer. J. of Math. 51, 1 (1936) p. 178.

¹⁾ FII, p. 71.