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102. Notes on Fourier Series (I): Riemann Sum.

By Shin-ichi IzuMI and Tatsuo KAWATA,
Mathematical Institute, Tohoku Imperial University, Sendai.
(Comm. by M. FUJIWARA, M.LA., Dec. 13, 1937.)

1. Let f(x) be a periodic function with period 1 and let us write
_ 1 k-1 Y
1 fk(x)—%—gf(m+ﬁ> .
If f(x) is integrable in the Riemann sense, then
1
@ lim fule)= | .

Jessen® has shown that if f(x) is integrable (in the Lebesgue sense),
then

lim fu(o) = f(0t

for almost all ®. Ursell® has shown that (2) is not necessarily true
for integrable function f(x) for almost all x, and (2) holds almost every-
where when f(x) is positive decreasing and of squarely integrable in
(0,1).
The object of the present paper is to prove the following theorem.
Theorem. Let f(x) be integrable and

3 f (w)~—;~a0+ %(an cos 2znx +b,, sin 2mnx) .

If a,Vlogn and b,V logn are Fourier coefficients of an integrable
Junction, then (2) holds almost everywhere.

For the validity of (2) almost everywhere f(x) can be discontinuous
in a null set, for the condition of the theorem depends on the Fourier
coefficients of f(x) only. The condition of the theorem is satisfied when

o0

S(ak+b2) logn<<ow,

n=2

In this case, by the Riesz-Fischer theorem a,1 logn and b, logn
are Fourier coefficients of squarely integrable function and then of
integrable function.

2. Let us write

o=la;  a=ll-®), c.=h >,
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then (3) becomes
f@)~ X3 e,

By (1) -
fule)~ S 3 enetFeieine)
=) . 1 k-1 wn ) )
~ 2 cne%zm{_ze&n?},\, 2 clmeZmlmm ,
n=—co k v=0 N=—00
that is
@) fil@) ~%a0+ S (@ €05 2k -+ by sin 2kna)

Without loss of generality we can suppose that ag=0. Thence we have
to prove that
lim £(@) =0
almost everywhere.
3. By the W. H. Young theorem

a,,_l_“’ cos 2mnx k>1)

2 -1V log (kn)

is a Fourier series of a non-negative integrable function, which we
denote by ¢u(x), where «; is taken such that

1 1
Viegk ’ v'log 2k

is a convex sequence and a;—0 as k— oo,
By the condition of the theorem there is an integrable function
g(x) such that

ag ,

g(x)~ i(an cos nx+b, sin nz)y logn .
Since

Kt)~ % 4 S_cos 2mknt ,
eillt) 2 ng V' log (kn)
we have

j: or(kt)g(t —x)dt~ ﬁlak,, cos 2rtknx + by, sin 2rknx) .

By (4) we have
1
fulo)={ puthtig(e—z)de

almost everywhere. Therefore it is sufficient to prove that

®) lim s;qok(kt)g(t—x)dt=0

almost everywhere
4. If g(t) is bounded, then there is an M such that |g(x)| <M.
In this case
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[ outetrgr—a)ae| < [ oute) gt~y ds< M [ puthtrie

=—1‘-’—s'°,p,,(t)ou=Mj1 oDt =, —0, as k— oo,
kJo 0

Thus (5) is proved.
In the general case, let us put

E=E(g®)|>n) (=12, ....),
then mE,—0 as n— .

fIf 5, PeEDo(E—x)dt|da éﬁdwfb,nm (k(t+2)) | 9(2) |t

1
< jE,, o1t [, gu(k(t+0)do=a  l90|di—0, a5 n—oo.
Hence there is a subsequence {E,} of {E.} such that

lim IE ou(t)g(t —z)dt=0

almost everywhere for all k.
For any positive ¢ there is an m such that

\ IE gok(kt)g(t—x)dtl<e
almost everywhere. We have

Jyoutkdgte—ayit={  puldgt—ait+|  ouknot—oit,

where CE denotes the complementary set of E. The second term of
the right hand side tends to zero as k— o, as was proved. Thus

tim| {* putkt)g(t—2)dt| <e

almost everywhere. Since ¢ is arbitrary, the theorem is proved.



