38. On Affine Geometry of Abelian Groups.

By Kôshichi TOYODA.

Harbin Technical College, Manchoukuo.

(Comm. by M. FUJIWARA, M.I.A., May 13, 1940.)

1. Let a set G of elements a, b, c, ..., satisfy the following axioms:

(1) For any pair of elements a, b, the product $a \cdot b$ of G determines uniquely one element c in G, viz. $a \cdot b = c$.

(2) For two given elements a (or b) and c, the equation $a \cdot b = c$ can be uniquely solved by b (or a) in G.

(3) For any four elements a, b, c and d, we have

$$(a \cdot b) (c \cdot d) = (a \cdot c) \cdot (b \cdot d).$$

(4) Each element a in G is idempotent, viz. $a \cdot a = a$.

In my previous paper¹⁾, we know that the operation $a \cdot b$ represents an abstract generalization of the mean operation which divides the straight line joining two points a, b in a given ratio m:n.

Now, we apply

Definition (A). Let us suppose that a set L(a, b) consists of elements which are produced from two elements a, b by the operation (1) and its inverse operation (2) with possible repetitions. Then, we say that the set L(a, b) is the straight line²⁾ joining two points a, b in the space G.

Under the above definition (A), can we constitute a space of affine geometry from G?³⁾ But the answer for this problem is not always affirmative, because the straight line L(a, b) of G does not necessarily admit the familiar proposition:

(L) Any two straight lines, not parallel to each other, meet in one and only one point.

In the following lines, we shall proceed to find a necessary and sufficient condition of the problem.

2. In place of the product $a \cdot b$, let us introduce the new product a+b into G as follows:

(5) Let a and b be any two given elements in G. If $a=x \cdot s$ and $b=s \cdot y$, for a fixed element s, then we put $a+b=x \cdot y$.

Here, we know⁴⁾ that the set G forms an abelian group with respect to the new product a+b and moreover the old product $a \cdot b$

2) This definition is due to the remark of M. Takasaki.

- 3) G. Hessenberg, Acta Math. 29;
 - H. Wiener, Jahrsber. d. D. M. V. (1891);
 - G. Hassenberg, Grundlagen der Geometrie;
 - M. Pasch und M. Dehn, Vorlesungen über neue Geometrie;
 - K. Reidmeister, Vorlesungen über Grundlagen der Geometrie;
 - O. Veblen and J. W. Young, Projective Geometry, I, II;
 - H. Weyl, Raum, Zeit, Matrie.
- 4) K. Toyoda, loc. cit.

¹⁾ K. Toyoda, On Axioms of Mean Transformation and Automorphic Transformations of Abelian Groups, Tôhoku Math. Journal 47 (1940).

can be expressed as a linear form of a and b, say, $a \cdot b = Aa + (E-A)b$, provided that A and $E - A^{1}$ denote two automorphic transformations of the abelian group G.

Now, putting

(6)
$$a \cdot b = Aa + (E - A) b = A (a, b)$$
,

we have the relations:

- (7) A(B(a, b), b) = AB(a, b),
- (8) C(A(a, b), B(a, b)) = (CA + (E C)B) (a, b),
- (9) A(a, b) = (E A) (b, a),
- (10) If A(a, b) = c, then $a = A^{-1}(c, b)$ and $b = (E - A)^{-1}(c, a)$.

First we have

Theorem 1. If we put

(11)
$$L(a, b) = b + R(A) (a-b),$$

R(A) forms a ring of automorphic transformations and contains the identical transformation E.

Proof. By making use of the above relations (6), (7), (8), (9) and (10), it is evident that we may put

$$L(a, b) = b + R(A) (a-b)$$
.

Next, we shall prove that R(A) forms a ring containing E as follows:

(i) From (7), we get

 $BC \in R(A)$, for any elements B, C in R(A).

(ii) If B, C are contained in R(A), then we obtain, by means of (7) and (10),

$$A^{-1}B \in R(A)$$
 and $(E-A)^{-1}C \in R(A)$,

so that, by using (8),

$$A(A^{-1}B)+(E-A)((E-A)^{-1}C)=B+C\in R(A).$$

(iii) From (7), we have

$$A^2 \in R(A)$$
,

whence, with the help of (9),

 $(E-A^2) = (E-A) (E+A) \in R(A).$

Consequently, we get from (7) and (10),

$$(E-A)^{-1}((E-A)(E+A)) = E+A \in R(A),$$

from which, by means of (9),

$$E - (E + A) = -A \in R(A)$$

¹⁾ E denotes the identical transformation.

No. 5.]

(iv) Also, it is evident by means of (6) and (10),

$$A^{-1}A = E \in R(A).$$

3. Furthermore, we shall prove the following

Lemma. In order that the straight line L(a, b) of G admits the proposition (L), it is necessary and sufficient that R(A) forms a corpus of automorphic transformations.

Proof. By means of (11), it is self-evident.

Theorem 2. In order that G constitutes a space of affine geometry under the definition (A), it is necessary and sufficient that G admits the postulate:

(12) If c and d be any two distinct elements in

$$L(a, b)$$
, then $L(c, d) = L(a, b)$.

Proof. Since the postulate (12) is equivalent to the proposition (L), it is self-evident.

Accordingly, we have

Theorem 3. Let G be a finite set¹⁾. Then, in order that G constitutes a space of affine geometry under the definition (A) for a proper automorphic transformation A, it is necessary and sufficient that G becomes a direct product of cyclic sub-groups of order p^{2} with respect to the new product a+b, that is to say, the invariant of G is (p, p, ..., p).

Proof. By means of Lemma, R(A) contains E. Therefore, in order that R(A) forms a corpus, R(A) must contain a sub-corpus $\{\lambda E\}$ of characteristic p. Thus we can prove the theorem by the existence³ of the sub-corpus $\{\lambda E\}$.

4. Finally, we shall give some remarks.

Theorem 4. In the definition (A), let us replace the fixed element s by another fixed element t, viz. if $a=z \cdot t$ and $b=t \cdot w$, then we put $a * b = z \cdot w$. Then, between the new products a+b and a * b there exists the relation a * b = a+b-t. Moreover⁴, the fixed elements s and t become the unit elements of G with regard to the new product a+b and a * b respectively.

Proof. By means of (6) and (10), it follows that

$$z = A^{-1}(a, t)$$
 and $w = (E - A)^{-1}(b, t)$,

so that

$$a * b = z \cdot w$$

= $A(A^{-1}(a, t)) + (E - A)((E - A)^{-1}(b, t))$
= $a + A(E - A^{-1})t + b + (E - A)(E - (E - A)^{-1})t$
= $a + b - t$.

1) O. Veblen and W. H. Bussey, Finite Projective Geometries,

I, Trans. Am. Math. Soc., **7** (1906), pp. 241–259; II, Trans. Am. Math. Soc., **8** (1907), pp. 266–268.

11, 17ans. Am. Math. Soc., 8 (1907), pp. 200-20 2) p denotes a prime number.

3), 4) K. Toyoda, loc. cit.

K. TOYODA.

Remark 1. In the case G constitutes an n-dimensional euclidean space and $A = \lambda E$, for a real number λ , L(a, b) is a straight line of one-dimension. In general, in the case $A \neq \lambda E$, L(a, b) is not always a straight line of one-dimension, but *m*-dimensional hyper-plane.

Remark 2. In the case where we consider a set of systems of axioms (1), (2), (3), and (4) in place of one system of axioms, we can proceed in the same way as before.