
1’o. .] 16;1

38. On Affine Geometry of Abelian Groups.

By Kbshichi TOYOD.
Harbin Technical College, Manchoukuo.

(Comm. by M. FuJIw., f.1.A., May 13, 1940.)

1. Let a set G of elements , b, c, ..., satisfy the following axioms"
(1) For any pair of elements , b, the product a-b of G deter-

mines uniquely one element c in G, viz. a-b=c.
(2) For two given elements (or b) and c, the equation a-b=c

can be uniquely solved by b (or ) in G.
(3) For any four elements a, b, c and d, we have

(a- b) (c- d)= (a-c)-(b- d).

(4) Each element a in G is idempotent, viz. a.a=a.
In my previous paper1), we know that the operation a.b represents

an abstract generalization of the mean operation which divides the
straight line joining two points a, b in a given ratio m" n.

Now, we apply
Definition (A). Let us suppose that a set L(a, b) consists of ele-

ments which are produced from two elements a, b by the operation
(1) and its inverse operation (2) with possible repetitions. Tbn, we
say that the set L(a, b) is the straight line) joining two points a, b in
the space G.

Under the above definition (A), can we constitute a space of afIine
geometry from G ) But the answer for this problem is not always
affirmative, because the straight line L(a, b) of G does not necessarily
admit the familiar proposition"

(L) Any two straight lines, not parallel to each other, meet in one
and only one point.

In the following lines, we shall proceed to find a necessary and
sufficient condition of the problem.

2. In place of the product a-b, let us introduce the new product
a/b into G as follows:

(5) Let a and b be any two given elements in G. If a=x.s and
b-- s- y, for a fixed element s, then we put a/b-x- y.

Here, we know) that the set G forms an abelian group with
respect to the new product a/b and moreover the old product a-b

1) K. Toyoda, On Axioms of Mean Transformation and Automorphic Transforma-
tions of Abelian Groups, Tbhoku Math. Journal 47 (1940).

2) This definition is due to the remark of M. Takasaki.
3) G. Hessenberg, Acta Math. 29;

H. Wiener, Jahrsber. d.D.M.V. (1891)
G. Hassenberg, Grundlagen der Geometrie;
M. Pasch und M. Dehn, Vorlesungen fiber neue Geometvie;
K. Reidmeister, Vorlesungen fiber Grundlagen der Geometrie;
O. Veblen and J.W. Young, Projective Geometry, I, II;
H. Weyl, Raum, Zeit, Matrie.

4) K. Toyoda, loc. cit.
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can be expressed as a linear form of a and b, say, a. b=A+(E-A)b,
provided that A and E-AD denote two automorphic transformations
of the abelian group G.

Now, putting

(6) a- b Aa+(E-A) b=A (a, b),
we have the relations:

(7) A(B(a, b), b)= AB(a, b),

(8) C(A(a, b), B(a, b))= (CA/(E-C)B) (a, b),

(9) A(a, b)-- (E-A) (b, a),
(10) If A(a,b)=c, then a=A- (c,b)

and b-(E-A)-1 (c, a).
First we have
Theorem 1. If we put

(11) L(a, b)=b-I-R(A) (a-b),
R(A) forms a ring of automorphic transformations and contains the
identical transformation E.

Proof. By making use of the above relations (6), (7), (8), (9) and
(10), it is evident that we may put

L(a, b) b+R(A) (a- b).

Next, we shall prove that R(A) forms a ring containing E as
follows:

( From (7), we get

BCeR(A), for any elements B, C in R(A).

(ii) If B, C are contained in R(A), then we obtain, by means of
(7) and (10),

A-Be R(A) and (E-A)-Ce R(A),

so that, by using (8),

A(A-B)+(E-A) ((E-A)-C) =B+Ce R(A)

(iii) From (7), we have

A’eR(A)

whence, with the help of (9),

(E-A) (E- A) (E-t- A) e R(A)

Consequently, we get from (7) and (10),

(E-A)- ((E-A) (E+A))=ETA eR(A),

from which, by means of (9),

E- (E+A)= A e R(A)

1) E denotes the identical transformation.
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(iv) Also, it is evident by means of (6) and (10),

A-*A=EeR(A)

3. Furthermore, we shall prove the following
Lemma. In order that the straight line L(a, b) of G admits the

proposition (L), it is necessary and sufficient that R(A)forms a corpus
of automorphic transformations.

Proof. By means of (11), it is self-evident.
Theorem 2. In order that G constitutes a space of affine geometry

under the definition (A), it is necessary and sufficient that G admits
the postulate

(12) If c and d be any two distinct elements in

L(a, b), then L(c, d)=L(a, b).

Proof. Since the postulate (12) is equivalent to the proposition
(L), it is self-evident.

Accordingly, we have
Theorem 3. Let G be a finite set). Then, in order that G con-

stitutes a space of affine geometry under the definition (A)for a proper
automorphic transformation A, it is necessary and sufficient that G be-
comes a direct product of cyclic sub-groups of order p with respect to
the new product a/ b, that is to say, the invariant of G is (p, p, ..., p).

Proof. By means of Lemma, R(A) contains E. Therefore, in
order that R(A)forms a corpus, R(A) must contain a sub-corpus {E}
of characteristic p. Thus we can prove the theorem by the existence)

of the sub-corpus {E}.
4. Finally, we shall give some remarks.
Theorem . In the definition (A), let us replace the fixed element

s by another fixed element t, viz. if a=z. and b-.w, then we put
a * b=z. w. Then, between the new products a/ b and a * b there
exists the relation a * b a/b- t. Moreover, the fixed elements s and
t become the unit elements of G with regard to the new product a+b
and a * b respectively.

Proof. By means of (6) and (10), it follows that

z=A- (a, ) and w=(E-A)- (b, ),
so that

a * b=z .w

=a/A(E-A-) t-l-b+(E-A) (E-(E-A)-1) t

=a+b-t.

1) O. Veblen and W.H. Bussey, Finite Projective Geometries,
I, Trans. Am. Math. Soc., 7 (1906), pp. 241-259;

II, Trans. Am. Math. Soc., 8 (1907), pp. 266-268.
2) p denotes a prime number.
3), 4) K. Toyoda, loc. cit.
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Remark 1. In the case G constitutes an n-dimensional euclidean
space and A=itE, for a real number 2, L(a, b)is a straight line of
one-dimension. In general, in the case A 2E, L(a, b) is not always
a straight line of one-dimension, but m-dimensional hyper-plan

Remark ,. In the case where we consider a set of systems of
axioms (1), (2), (3), and (4) in place of one system of axioms, we can
proceed in the same way as before.


