532 [Vol. 16,

119. Normal Basis of a Ouasi-field.

By Tadasi NAKAYAMA.

Mathematical Institute, Osaka Imperial Univerity. (Comm. by T. TAKAGI, M.I.A., Dec. 12, 1940.)

Recently N. Jacobson extended the fundamental theorem of the Galois theory to quasi-fields in the following sense¹⁾: Let P be a quasifield and there be given a finite group of outer automorphisms²⁾ $\mathfrak{G} = \{E, \}$ S, \ldots, T , of order, say n. If Φ is the sub-quasifield of invariant elements, then P has the rank n over φ (at both left and right) and there exists a 1-1 correspondence between subgroups of S and subquasifields between P and Φ . The purpose of the present note is to show that moreover P possesses a (one-sided) normal basis³⁾ over Φ , that is, there exists an element b in P such that the n conjugates, so to speak, b^E , b^S , ..., b^T of b form a (linearly independent) left (say)-basis of P over Φ . The proof is a generalization of M. Deuring's second proof to the theorem of commutative normal bases;⁴⁾ the proof has been emancipated, by the present writer, 5) from the restriction on the semisimplicity of the group ring. But it involves modifications caused by the non-commutativity and makes use of a generalization of the Hilbert-Speiser theorem in a refined form.

Let P, \mathfrak{G} , n and φ be as above. Denote the center⁶⁾ of P by Z, and put $K = \varphi \cap Z$. Let further K^* be a finite extension of K, and let

$$P^* = P_{K^*}, \qquad \varphi^* = \varphi_{K^*}$$

be the rings obtained from P and \emptyset by extending the ground field K to K^* . (They are not, in general, quasi-fields any more). Automorphisms E, S, ..., T of P can be looked upon, in natural manner, as those of P^* (and in fact \emptyset^* consists of the totality of invariant elements).

Lemma 1 (Generalized Hilbert-Speiser theorem). Let to each S in

¹⁾ N. Jacobson, The fundamental theorem of Galois theory for quasi-fields, Ann. Math. 41 (1940).

²⁾ We mean that all the automorphisms in & except the identity are outer.

³⁾ For the theorem of normal basis of a commutative field see: E. Noether, Normalbasis bei Körpern ohne höhere Verzweigung, Crelle, 167 (1931); M. Deuring, Galoissche Theorie und Darstellungstheorie, Math. Ann. 107 (1932); H. Hasse, Klassenkörpertheorie, Marburg (1932); R. Brauer, Über die Kleinsche Theorie der algebraischen Gleichungen, Matn. Ann. 110 (1934); M. Deuring, Anwendungen der Darstellungen von Gruppen durch linearen Substitutionen auf die Galoissche Theorie, Math. Ann. 113 (1936); R. Stauffer, The construction of a normal basis in a separable normal extension field, American J. Math, 58 (1936). There is also an unpublished proof by E. Artin.

⁴⁾ M. Deuring, Math. Ann. 110, l.c.

⁵⁾ T. Nakayama, On Frobeniusean algebras, II (forthcoming in Math. Ann.), §3. Appendix.

⁶⁾ We are interested only in the case where P has an *infinite rank* over its center. For, otherwise the theorem can readily be reduced to the commutative case, because of Jacobson's result.

 \mathfrak{G} correspond a regular matrix C_S in P^* , of degree (=order), say, r, such that

(1)
$$C_S C_T^S = C_{TS}$$
 for every S , T .

Then there exists in P^* a regular matrix A of degree r such that

(2)
$$C_S = A^{-1}A^S$$
 for every S.

The case where $K^* = K$ whence $P^* = P$ was treated in Jacobson's paper, l.c. The present case can be manipulated in like manner. Consider namely a crossed product

$$\mathfrak{S}^* = u_E P^* + u_S P^* + \dots + u_T P^*$$

where $u_E, u_S, ..., u_T$ are abstractly introduced n elements linearly independent over \mathscr{O}^* and satisfying $\eta u_S = u_S \eta^S (\eta \in P^*)$, $u_S u_T = u_{ST}$. \mathfrak{S}^* contains a subring $\mathfrak{S} = u_E P + u_S P + \cdots + u_T P$, and \mathfrak{S}^* is obtained from \mathfrak{S} by extending the ground field K to K^* . \mathfrak{S} is a simple ring with the center K, as was shown in Jacobson, l.c. Hence \mathfrak{S}^* is a simple ring with the center K^* .

Consider, on the other hand, an r-dimensional (right-) vector space

$$V = v_1 P^* + v_2 P^* + \dots + v_r P^*$$

over P^* . That a system of matrices C_S satisfies (1) means that if we associate with u_S the semi-linear transformation $\sigma = (C_S, S)$:

$$(v_1, ..., v_r)^{\sigma} = (v_1, ..., v_r)C_S$$
, $(v\eta)^{\sigma} = v^{\sigma}\eta^S(v \in V, \eta \in P^*)$

and with $\xi \in P^*$ the transformation $v \to v \xi$ then V becomes a right-module of \mathfrak{S}^* ; we denote the \mathfrak{S}^* -module V thus obtained by V_1 . Further, if we use the system $\{E_S = E \text{ (unit matrix of degree } r)\}$ instead of $\{C_S\}$ then we get a second \mathfrak{S}^* -right-module V_0 from V. But (finite) moduli of a simple ring \mathfrak{S}^* are characterized, up to isomorphism, by their behaviors with respect to the center K^* . Therefore, the two moduli V_0 and V_1 are operator-isomorphic, and if A is the matrix of the isomorphic transformation, which is certainly regular, then $C_S = A^{-1}EA^S = A^{-1}A^S$ as desired.

On taking reduction into account we show further

Lemma 2 (Refinement of the Hilbert-Speiser theorem). Let C_S in Lemma 1 be of the form

$$C_S = \begin{pmatrix} D_S H_S \\ 0 & F_S \end{pmatrix}.$$

Then we can take the regular matrix A, satisfying (2), in the similarly reduced form

$$A = \begin{pmatrix} A_1 A_3 \\ 0 A_2 \end{pmatrix}.$$

¹⁾ See E. Noether, Nichtkommutative Algebra, Math. Zeitschr. 37 (1933).

Furthermore, if there are given already specified regular matrices A_1 and A_2 satisfying $D_S = A_1^{-1}A_1^S$ and $F_S = A_2^{-1}A_2^S$ then we can take a suitable A_3 so that A given by (4) fulfills (2).

Let for the proof g be the degree of D_S , and consider the subspace $W=v_1P^*+\dots+v_gP^*$ of V. If we look upon V as V_1 , defined above, W is an allowable submodule, as the form (3) shows; in this interpretation we write W_1 for W. Similarly the same space W is an allowable submodule of V_0 , which we shall denote by W_0 . The \mathfrak{S}^* -right-moduli W_0 and W_1 are operator-isomorphic, and such an isomorphism can be extended to that of the over-moduli V_0 and V_1 , because they are completely reducible. But the matrix A of such an extended isomorphism has the form (4). This proves the first half of the lemma. As for the second half, we have simply to observe that to specify A_1 and A_2 means to specify the isomorphisms $W_0 \cong W_1$ and $V_0/W_0 \cong V_1/W_1$, and we can, because of the complete reducibility, combine them into an isomorphism between V_0 and V_1 .

Now we come to

Theorem (Existence of normal bases). Let P, \mathfrak{G} and \mathfrak{O} be as before. Then there exists in P an element b such that its conjugates b^E , b^S , ..., $b^T(\mathfrak{G} = \{E, S, ..., T\})$ form a (linearly independent) left-basis²⁾ of P over \mathfrak{O} . In other words, the \mathfrak{O} -module P is operator-isomorphic to the group ring $G(\mathfrak{O})$ of \mathfrak{G} over \mathfrak{O} .

Let the above field K^* be sufficiently large so that all the absolutely irredicible representations of $\mathfrak G$ lie in it. Let $S \to G_S$ be one of them, and let U_S be the directly indecomposable component of the regular representation of $\mathfrak G$ belonging, in the sense of R. Brauer-C. Nesbitt, to G_S . We suppose that U_S lie in K^* too and be reduced in the form that the right upper part is zero; the first largest completely reducible part (as well as the last) of U_S is G_S ;

$$U_{S} = \begin{pmatrix} G_{S}0 \\ * & * \end{pmatrix}.$$

Let r and g be the degrees of U_S and G_S respectively. From $U_SU_T = U_{ST}$ follows $U'_TU'_S = U'_{ST}$, and so we see, on observing the reduced form of U'_S , the existence of a regular matrix $A = (a_{ij})$ of the reduced form $\begin{pmatrix} A_{1*} \\ 0 \end{pmatrix}$ in P^* such that

(6)
$$U_S' = A^{-1}A^S$$
, that is, $A^S = AU_S'$ for every $S \in \mathfrak{G}$.

The submatrix A_1 is regular too and satisfies

$$A_1^S = A_1 G_S'.$$

¹⁾ In case of a commutative field Speiser's construction gives, as a matter of fact, the first part of the lemma; his construction, however, does not apply to our non-commutative case. As for the second part, it seems to the writer necessary to employ a structural argument as below even in the commutative case.

²⁾ Similarly P has a normal right-basis over \emptyset .

³⁾ R. Brauer-C. Nesbitt, On regular representations, Proc. Nat. Acad. Sci. 23 (1937).

We want to prove that the g^2 elements $a_{ij}(i, j=1, 2, ..., g)$ in A_1 are left-linearly independent over \mathcal{Q}^* . To do so, let

(8)
$$\sum_{i=1}^{g} \sum_{j=1}^{g} \varphi_{ij} a_{ij} = 0, \qquad \varphi_{ij} \in \mathcal{O}^*.$$

Now, there exists a linear combination $L(G'_S)$ of G'_S with coefficients in K^* equal to the matrix unit ε_{11} . The corresponding linear combination L(S) of S effects, according to (7), the transformation: $a_{i1} \rightarrow a_{i1}$, $a_{ij} \rightarrow 0 (j=2, 3, ..., g)$. Hence we get from (8)

(9)
$$\sum_{i=1}^{g} \varphi_{il} a_{il} = 0.$$

But there exists for each k=1, 2, ..., g also a linear combination $L_k(S)$ of S whose corresponding matrix $L_k(G'_S)$ is the matrix unit ε_{k1} . By $L_k(S)$ $a_{i1} \rightarrow a_{ik}$, $a_{ij} \rightarrow 0 (j=2, 3, ..., g)$, again according to (7). Thus we obtain from (9)

(10)
$$\sum_{i=1}^{g} \varphi_{i1} a_{ik} = 0$$
 $(k=1, 2, ..., g)$, that is, $(\varphi_{11}, ..., \varphi_{g1}) A_1 = 0$.

Therefore, since A_1 is regular, $\varphi_{11} = \cdots = \varphi_{g1} = 0$. Similarly all the φ_{ij} are 0. So the g^2 elements in A_1 are left-linearly independent over Φ^* . Now, write (6) in the form

$$(A')^S = U_S A'.$$

(Observe that the coefficients in U_S are in K^*). This shows that a \emptyset^* -left-module $\mathfrak{M}_i(\subseteq P^*)$ generated by the r elements $a_{i1}, a_{i2}, \ldots, a_{ir}$ forming a column in A' (that is, a row in A) is a \emptyset^* - \mathfrak{G} -double-module and is operator-homomorphic to the representation \emptyset^* - \mathfrak{G} -module \mathfrak{U} belonging to U_S . This is the case for every $i=1,2,\ldots,r$. But we take only the first g of them: $\mathfrak{M}_1, \mathfrak{M}_2, \ldots, \mathfrak{M}_g$, and consider their sum

$$\mathfrak{M} = (\mathfrak{M}_1, \mathfrak{M}_2, ..., \mathfrak{M}_g)$$

in P^* . Evidently \mathfrak{M} is operator-homomorphic to a direct sum

$$\mathfrak{V} = \mathfrak{U}_1 + \mathfrak{U}_2 + \cdots + \mathfrak{U}_q$$

of g moduli \mathfrak{U}_i isomorphic with \mathfrak{U} . Let \mathfrak{W} be the submodule (of dimension g over \mathscr{O}^*) in \mathfrak{U} corresponding to the first largest completely reducible part G_S of U_S , and \mathfrak{W}_i be the corresponding submodule in \mathfrak{U}_i . Then the (direct) sum $\mathfrak{Y} = \mathfrak{W}_1 + \mathfrak{W}_2 + \cdots + \mathfrak{W}_g \subseteq \mathfrak{V}$) is mapped by this homomorphism onto the submodule \mathfrak{N} of \mathfrak{W} generated by the g^2 elements in the submatrix A_1 . Since these g^2 elements are (left-) linearly independent over \mathscr{O}^* , this homomorphism between \mathfrak{N} and \mathfrak{Y} must be an isomorphism. But \mathfrak{Y} contains the largest completely reducible sub-

¹⁾ If \mathfrak{O}^* is semi-simple then \mathfrak{D} is actually the largest completely reducible submodule of \mathfrak{B} . And, \mathfrak{O}^* is certainly semi-simple if K^*/K is separable. As a matter of fact, we could assume without loss of generality that this be the case.

module of \mathfrak{B} , and therefore, the whole homomorphism between \mathfrak{M} and \mathfrak{B} is necessarily an isomorphism too (or, the gr elements $a_{ij}(i=1, 2, ..., g; j=1, 2, ..., r)$ are left-linearly independent over \mathfrak{P}^*).

This is the case for every irreducible representation G_S of \mathfrak{G} . So we get \mathfrak{M} for each G_S , and we consider the sum \mathfrak{R} (in P^*) of the \mathfrak{M} 's corresponding to all the different G_S 's. This sum is direct, since the summands have no isomorphic submoduli. Hence \mathfrak{R} is the whole P^* because both \mathfrak{R} and P^* have the same rank $n(K^*:K)$ over \mathfrak{O} . But \mathfrak{B} is, by its construction, operator-isomorphic to the group ring $\mathfrak{G}(\mathfrak{O}^*)$, and so is \mathfrak{R} . That is, the \mathfrak{O}^* - \mathfrak{G} -module P^* is operator-isomorphic to the group ring $\mathfrak{G}(\mathfrak{O}^*)$. It follows then that the \mathfrak{O} - \mathfrak{G} -moduli P and $\mathfrak{G}(\mathfrak{O})$ are also operator-isomorphic to each other, as one easily sees from the Krull-Remak-Schmidt theorem asserting the upto-isomorphism uniqueness of the direct decomposition of a group (with chain conditions).

Remark. In case the group ring $\mathfrak{G}(\Phi)$ is semi-simple U_S and G_S coincide and so we do not need Lemma 2. Even when $\mathfrak{G}(\Phi)$ is non-semisimple we could evade the same lemma if P^* were a quasi-field. In this case we take namely an arbitrary regular A satisfying (7) and consider its first g columns. There exist, since A is regular and P^* is assumed to be a quasi-field, g indices $i_1, i_2, ..., i_g$ such that the submatrix

(12)
$$(a_{ij} \text{ with } i=i_1, i_2, ..., i_g; j=1, 2..., g)$$

is regular, and we use this submatrix instead of A_1 . Furthermore, the same would be the case if all the PZ^*_{ν} were quasi-fields, where $Z^* = Z_1^* + Z_2^* + \dots + Z_m^*$ is a decomposition of Z^* into a direct sum of mutually conjugate fields.³⁾ For, we consider the component of the matrix A with respect to PZ_1^* , for instance, and look for g indices i_{μ} such that the component of (12) is regular in PZ_1^* . Then the components of (12) for the other PZ_{ν}^* are automatically regular (in the corresponding quasi-fields PZ_{ν}^*), as one easily sees, on observing that Z_{ν}^* are mutually conjugate under \mathfrak{G} , from (7). The case of a commutative P, treated in Nakayama, l.c., can be classed into this last category.

¹⁾ The regular representation of $\mathfrak G$ contains U_s exactly g times.

²⁾ This is the case if and only if n is not divisible by the characteristic of 0 (or, of K).

³⁾ Observe that Z is separable and normal over K. Its Galois group is homomorphic to $\mathfrak G$.