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Mathematical Institute, Osaka Imperial University.

(Comm. by T. TAKAGI, M.I.A., July 12, 1941.)

1. In$’oduction. One of the fundamental theorems in the theory
of the integral is that of Radon-Nikodym concerning the countably ad-
ditive set functions. The proof given below ( 2) of this theorem will
be shorter than the standard one in S. Saks’ book or the one recently
published by C. Carath6odory". Our proof is carried out by a maximal
method, by making use of a lemma which is a simple modification of
H. Hahn’s decomposition theorem". The same method is also applied
( 3 and 4) to give lattice-theoretic formulations of Radon-Nikodym’s
theorem. Of these ten years, such formulations were given more or
less explicitly by many authors, F. Riesz, H. Freudenthal, Garrett
Birkhoff, S. Kakutani, F. Maeda and S. Bochner-S. R. Phillips’. Our
maximal method also makes use of the ideas of Riesz and Freudenthal,
but it seems to be more direct than those of the cited authors. Thus,
without appealing to Freudenthal’s spectral theorem, we may obtain
Kakutani’s lattice-theoretic characterisation of the Banach space (L)
from our result in 3. Moreover the result in 4 will give a simpli-
fied proof and extension of Freudenthal’s spectral theorem.

2. The concrete case. A class of sets in a space X is called
countably additive if (i) the empty set belongs to , (ii)with E its

complement CE also belongs to and (iii) the sum /E, of sequence

{E,} of sets e belongs to . A real-valued finite function F(E) de-

fined on is called countably additive if F(/E)=F(E) for any
=1 n--1

sequence {E} of mutually disjoint sets e .. Let (E)be a neasure on
X, that is, (E) be countably additive and non-negative on X. With-
out losing generality we assume that any subset of a set e of -measure zero also belongs to . A countably additive set function

1) Theory of the integral, Warsaw (1937), 36.
2) Ueber die Differentiation von Maszfunktionen, Math. Zeits., 42 (1940), 181-189.

J. yon Neumann also gave an interessant proof by making use of the Banach space
(L.). See his Rings of operators, III, Ann. of Math., 41 (1940), 126.

3) S. Saks: loc. cit., 32.
4) F. Riesz" Sur la dcomposition des op6rations lin6aires, Bologna Congress, III

(1928), 143-148. Sur quelques notions fondamentales dans la thorie g6n6rale des op6ra-
tions lin6aires, Ann. of Math., 41 (1940), 174-206. Sur la th6orie ergodique des espaces
abstraits, Acta Szeged, 10 (1941), 1-20, to be cited as [R-3]. H. Freudenthal: Teil-
weise geordnete Modulen, Proc. Acad. Amsterdam, 39 (1936), 641-651, to be cited as
[F--l]. G. Birkhoff: Dependent probabilities and spaces (L), Proc. Nat. Acad., 24
(1938), 154-158. S. Kakutani: Mean ergodic theorem in abstract L-spaces, Proc., 15
(1939), 121-123. Concrete representations of abstract L-spaces and the mean ergodic
theorem, Ann. of Math., 42 (1941), 523-537, to be cited as [K-2]. F. Maeda Partially
ordered linear spaces, J. Sci. Hirosima Univ., 10 (1940), 137-150. S. Bochner-S. R.
Phillips" Additive set functions and vector lattices, Ann. of Math., 42 (1941), 316-324.
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F(E) is called absolutely continuous if (E)=O implies F(E)=O. F(E)
is called singular if there exists a set E0 of -measure zero such that
F(E)=O for all E CEo. A real-valued function f(x) on X is called
measurable if the set E(f(x)> a)e for all real number a. We may

define the integral !.f(x)(dx) of Lebesgue’s type of integrable, mea-

surable function f(x). It is well-known that the set function F(E)=

(dx) , the indefinite integral, is countably additive and ab-on

solutely continuous.
Radon-Nikodym’s theorem states that any countably additive set

function may uniquely be, expressed as the sum of an indefinite integral
and a singular set function. In particular, countably additive and ab-
solutely continuous set functions may be identified with the indefinite
integrals.

For the proof we need a
Lemma 1. :Let G(E) be a non-negative, countably additive set

function and suppose that G(E) is not identically zero on . Then
either G(E) is singular or there exist a rational number a :> 0 and a
set E of -measure :> 0 such that G(E) a(E) for all E E.

Proof. By Hahn’s decomposition theorem, there exists, for any
(rational) number a:>0, a set E i such that G(E)a(E) for
E E and G(E) a(E) for E CE. Assume that (E)= 0 for
all rational number a :> 0, then the sum /E E0 is of -measure zero

a>0

and G(E)=O for all E CEo.
Proof of Radon-Nikodym’s theorem. It will be sufficient to prove

the case of non-negative, countably additive set fuaction F(E). Let Z

be the supremum of the numbers If(x)(dx), when f(x) runs through
X

the set IF] of all the non-negative, integrable functions such that

If(x)(dx) F(E) over a sequence {f()}all Then there, exists

of functions e IF] such that lira f(x) (dx)=z. We have, for any
X

Eel,

E E VE E

EVE,

where the sup on the second and the third terms are to be taken for all
the disjoint decomposition of E. Hence, by putting f()=sup f(x), we

have f() e [F] and If(x) (dx) Z. Next put G(E) F(E) If(x) (d),
x E
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then our task is to show that G(E) is either singular or G(E)=O on
i. Let G(E) be not singular and G(E)-0 on i, then there exist, by
the lemma 1, a rational number a ::> 0 and a set E of -measure > 0
such that G(E) a(E) for all E E. Let c(x)/a be the character-
istic function of E, then we would obtain (f(x)+c(x))e IF] and

((f(x)+c(x))(dx) >/, contrary to the definition of /. The unique-

ness of the decomposition may easily be proved. For a countably ad-
ditive set function is identically zero if it is absolutely continuous and
singular simultaneously.

3. The metrical case. The space (A) of all the countably ad-
ditive set functions F(E) on i is a semi-ordered linear space if we call
Fe (A) non-negative (written F 0) when F(E) 0 for all Ee

(1) If F0 and a 0, then aFrO,
(2) If F0 and -F0, then F=O,
(3) If F:> 0 and G 0, then F-t-G 0,
(4) (A) is a lattice by the semi-order relation .

In fact F/ F /0 sup (F, 0), F- F/ 0 inf (F, 0) are respectively
defined by F+(E)=supF(E’), F-(E)=infF(E’). As is well-known,

E <E E <E
F=F+ +F- cad F]=F+-F-=sup (F, -F). By putting
IF] (X)=the total variation of F on i, we have

(5) (A) is a Banach space by the norm I[FiI=II([F])[[ such that
F 0, G 0 imply IIF+GII=I[FII/[I Gll.

Let (A) be any abstract space satisfying (1)-(5). Choose any
positive element e (A) (written + :> 0), that is, an element + satisfy-
ing 0, 0. Call + a unit of (A) and write 1 for o; we also
write a for a. 1 when there occur no ambiguities. An element G is
called singular if G[/ 1 =0. A non-negative element E is called a

quasi-unit if E/ (l-E)=0. A finite linear combination ,aE of

quasi-units E is called a step-element and we call absolutely continuous
the element which can be expressed as the strong limit of step-elements.

We will show that any element e (A) may uniquely be expressed as
the sum of an absolutely continuous element and singular element.

For the proof we need four lemmas.
Lemma 2. A vector lattice satisfying (1)-(4) is a distributive

lattice, viz. we have (A / B) / C= (A / C) / (B / C), (A / B) / C=
(A /C)/ (B /C) for any three elements A, B and C.

Proof. See[F-l], 642.
Lemma 3. Let 0 F __<=: F_ and let the sequence of numbers

{1[ F, [[} be bounded. Then the sup (F, F, ...) =F exists and we have
lim F-F 0.

ProofD. The set of all the non-negative elements is strongly
closed. For we have IIFI[-IIGIIII(IF[-[G])iIIIF-GII from the
well-known inequality F I-] G F-G [. Since F-F F: I[-

1) due to [R-3], 7. Cf. also [K-2], 526.
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F II, n _>_ m, tends to 0 as m tends to oo, F converges in norm to an
element F. From F-F,, _>_ 0, n >= m, and lira (F-F) (F-F)II- 0

we obtain FF (re=l, 2, ...) by the strong closure of the non-
negative part of (A). Let GF (re=l, 2, ...), then, in the same
way, we obtain G >= F. Thus we have F= sup (F, F, ...).

Lemma . The set of all the step-elements constitutes a sub-
lattice of (A).

Proof. Since the symmetric relation E (l-E)=0 is equivalent
to 2E 1 E, the set of all the quasi-units forms a Boolean algebra.
For E, Ee implies 2(E E) 1 =(2E 1) (2E 1)=El E,
2(E E) 1 =(2E 1) (2E 1)=E E. Therefore any two

elements F, G e may be expressed as F= aE, G E, E E 0
i=1 i=1

(ij), Ee (i=l, 2,...,n), and hence FvG=max(a,

F G min (a, )E both e . Cf. [K-2], 531.
i-1

Lemma 1’. Let G0 and let GI0. Then there exists a
rational number a 0 and a quasi-unit E, 0 such that G aE.

Proof. There exists a rational number a0 such that
(G-a)+ 1 0. Assume the contrary, then 0 (G-a)+

((G-a) 1) += ((G (1 +a)a)+=O and hence 0 G (1 + a) a for
all rational number a 0. Thus we would have G 1 =0, contrary to
the hypothesis. Let now (G-a)+ 1 0 and hence (G/a-l)+ 1 0.

=sup (n(V/a- 1)+ 1) exists and > 0.Then, by the lemma 3, E
Since 2E 1 (sup (2n(G/a- 1)+ 2)) 1 E, E, is a quasi-unit.

klan

Next from n(G/a-I)+ l=((n(G/a-I)) 1)+ =((nG/a (n+ 1))-n)+

((n+ 1)(G/a l)--n) +
we obtain E Via 1. Thus aE 6.

The decomposition of (A). Let Fe (A) be positive, and denote by
IF] the set of all the non-negative step-elements T such that T F.
Put Z=sup Tll, then there exists a sequence (T} of elements e [F]

Te[F]

such that lim T ][=. By the lemma 4, F=sup T e [F]. We have,
n

by the lemma 3, IiFli=z and lim IIr-rll=0, where F=sup F.
We next prove that G=F-F is either singular or =0. Assume the
contrary, then, by the lemma 1’, there exists a quasi-unit E,>0
such that G aE, a O. Thus F+aEa is a strong limit of elements
e[F] and hence we must have []r+aE=l[=l[F[i+a[E=liZ, contrary to
F Z, E > 0.

The uniqueness of the decomposition. It will be sufficient to show
than an absolutely continuous, singular element G is =0. Since G is
absolutely continuous, we have lira G-G,. 0, G e . As 0 E 1

for any Ee we have ]G]a (n= 1, 2, ...) and hence, by the singu-
larity of G, G] . G ]= 0 (n= 1, 2, ...). As is well-known, we have
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A B-A’ B I-t-I .4 /B-A’ /B I= A-A’ in any vector laP,ice.
Thus we have G =i ( G )i =i ( G[ G )l ( G-I G i)
(n 1, 2,...), proving G 0.

4. The general case. The abstract space (A) satisfying (1)-(5)
is, by lemma 3, a-completd), viz.

(5)’ Any sequence (F}, n=l, 2, ..., bounded from above (below)
admit the supremum (infimum) in (A).

Let now (A) be any abstract space satisfying (1)-(5)’, then we can
extend the maximal method to obtain the decomposition of (A). In
this case we call absolutely continuous the element which can be ex-
pressed as the order-limit of an enumerable number of step-elements.
We first prove a

Lemma 1". Let GO, GaE, Ee and a0. Then, for any, 0 < < a, E=sup (n(G/-1)+ 1) > E and G > E.
ln

Proof. That G flE was already proved in lemma 1’. We will
prove E E in the special case a= 1. The proof reads as follows.
Let 0 < 1, then we have G-(1-)=G-(1-)E-(1-)(1-E)
E-(1-)(1-E) and (E-(1-)(1-E))+= (E-- (1-)(1-E)-
(1-) (1-E))=E+(1-)(1-E)-(1-)(1-E)=E by Eel. Thus

n(G/(1 )1) + InEAIn3EAE for n=1,2,.., and henee
E:_ E.

The decomposition of (A). Let F 0 and put
+ :),

a>0 lgn

where the supremum of the first term is to be taken over all the
rational numbers a 0. If G=F-F is not singular, then there exist,
by the lemma 1’, a rational number 0 and a quasi-unit E 0 such
that G fiE. We have, by the lemma 1", E() E if 0
By FF, Ffl()E) and F-FflE we obtain F
Again by the lemma 1" we have E() E if 0 () (D. Thus
by F F, F 2()E() and F-F E we obtain F 3fl()E. In this
way we would have F(n+l)fl()E (n=l, 2,...)if 0fl()fl, which
is a contradiction. Thus G must be singular.

The uniqueness of the decomposition. Let G be absolutely con-
tinuous and singular. As in 3 we have G G=0 (n= 1, 2, ...),
where G=order-lim G, G,e. Thus G l=l G] G l=order-lim
( G] ]G )=0. This prove the uniqueness of decomposition.

Remark. The above result is fairly general and it may be ap-
plied to the theory of probability or to the operator theory in Hilbert
or Banach spaces.

1) In truth, it may be proved (JR-3], 7) that the vector lattice (A) satisfying (1)-
(5) is complete, viz.

(5)rt any set bounded from above (below) admits the supremum (infimum) in (A).
The. second paper of Riesz and those of Maeda, Bochner-Phillips treat the vector lattice
satisfying (1)-(5)t. However, the decomposition theorem would be more general if we
assume the weaker condition (hy instead of (5)rC


