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In a previous paper®, we have defined a conformal arc length «
on the curves in the conformally connected manifold and have proved
the Frenet fomulae
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The conformal arc length does not exist for the generalized circles.
The most simple curves having the conformal arc length are the
ones for which we have

4 6 n o
2) l=i=1=--=21=21=0.

We shall, first, consider the properties of these curves.
§1. Substituting the equations (2) in the Frenet formulae (1), we
have

®) b oga, S a=a, Ya-a, T p=a,

d,; © @ do ® @ do @ @ do ® O
which shows that, if we develop the curve on the tangent conformal
space at A we shall obtain a curve lying always on a two-dimensional
sphere determmed by f% (fé é} and (z%

Considering always the development of the curve on the tangent
conformal space at a fixed point of the conformally connected manifold,
we can treat such curves as if they were on a two-dimensional flat
conformal space.

1) K. Yano and Y. Mutd: On the conformal arc length, Proc. 17 (1941), 318-322.
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Now, putting
P=A+A+A+A,

(4) o GO @ @
Q=A—A+A—-A,
w @ @ @&

we have

d d
. P —— — —
(5) - P= and " Q Q,

g

consequently, we can see that P and Q are two fixed points.
The circle passing through the three points é:l), P and Q@ being

A— A, the angle 6 between the curve and A—A is given by
@ & @ 3

inoe_ BB G _1
VAAV(A—A)(A—-A) V2
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from which we find 6 =%. Thus we have the

4
Theorem I. The curve whose all conformal curvatures 2,2, ...,
2, A vanish cuts the circles passing through two fixed points always by
the fixed angle %, consequently, it is a loxodrome.

The four points ‘31), (;1,’ P and @ lying on the circle gl)—z;l), the
« (C
points (z% and {21) are harmonically separated by the points P and @ on

this circle.

We shall now find the differential equations of these generalized
loxodromes.

Differentiating the equation

(6) 4=(4) a,,
and making use of the formulae
dA, = dutd;,
dA; = I%du*Ag+ IT5du* A+ IT5.dur A
dA..= I du®A;,

which define the conformal connection, we find successively

d2
ds du?
™ A=At A

ds
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where we have denoted by &/0s the covariant differentiation along the
curve with respect to the Christoffel symbols 174, = {}.}.
Putting
i O°u’ oluz o Sk dut du? du®
10 Vi= o — ——— 11§
(10) 353 *oe o ds ds ds
we have, from (9),

(11)

Differentiating once more the equation (11) along the curve, we
have, in consequence of (3),
2
(12) do® © ( _‘L \>4ng o
ds
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2
*) We have used the relations 0=21=—{¢, s} =—[{t, s} — {0, s}] (Z—i) and

1 o sk o dwi duk .
o8y =Lty =5 9it 5 5 50—~ g, ~ g, for the reduction.
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from which we obtain
d’s

2
dVI Sk SPu’ du” ds? ;oo do \*
13 S22 Vicr. % Vi=e — 14 =<h)
( )gyk s 382 +ga 583+ dS _d_ [ 382 ds
ds
and
dz
A uk du? d32
14 = Vil 2 = ¢
(4) Bs—i—ﬂc 0s® ds da v
ds
But, as we can see from (10), we have
du®
VIZ =0
gﬂ dS
which gives, on covariant differentiation,
; otk oV duk
15 V7 =—y; .
( ) Jir S 82 ik Ss dS
Substituting these equations in (14), we find
d2
SVi_dwt  8VY dut _ " ds?
1 ey . Ve
(16) s ds 7 os ds | do
ds
or .
(17 Dv_y

Ds

where D/Ds is a conformal covariant derivative defined in a previous
paper?, and

(18) vi= V"

(%
o being defined by &
(19) (%) =gavive.

If the equations (16) hold good, the left-hand member of (13) will
be written as

2 dfo. 2 ¢ o
ds? ds? Pyl
do N2 "’*"FgakV]Vk Eli %V’ os?
ds ds

then, in consequence of (19), the equations (13) are automatically
satlsﬁed

1) K. Yano: Sur la connexion de Weyl Hlavaty et ses applications a la géométrie
conforme, Proc. Physico-Math. Soc. Japan. Vol. 22 (1940), 595-621.
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So that, (17) are the differential equations of the generalized
loxodromes to be obtained.
§2. Next, we shall consider the curves for which we have
4 5 n o
(20) A=const. A=1=..=2=21=0.

For these curves, we have, from (1),

@) Fa=4, L a=ja+a, “a=ra+a, % a=4,

de © @ do ® © @ de @ @© ® da [C) ()

consequently, we can, as in §1, treat the curves as if they were in a
two-dimensional conformal space. In order that the circle

(22) aoA + (11A + a2A + 03A

(O @ @ (€]

where ag, a3, 2z and a3 are constants, be a fixed circle, the constants «q,
a1, 3 and oz must satisfy the equations

(23) adtag=pag, dtay=pa, a=p0, a=po

where p is a proportional constant.
Eliminating ay, a1, 22 and a3 from these equations, we have

(24) pt—=22p2—1=0

which gives two real values of p

@) { p=+Vi+V 41,
o=V IV L.
Corresponding to these values of p, we have
diantagiay=1 A4+1-piptip:l,
and L -
aioyiogiag=1V A2+1p 1 p%p 1= =1V 2241-p: 0% —p:l.

Consequently, the two circles defined by

P= +1/)2+1pA+p2A+pA+A
(26) @ @ &

V251 pA+p2A—pA+A

[¢)] @ &

are both fixed circles. Moreover, we can easily verify that
27 P-P=0 and Q-Q=0,
that is to say that the P and Q@ are both point-circles.
The circle passing through the three points (1;%, P and @ being
A—pzéi), the angle 0 (00 ) at ff}) between the curve and this circle

@ .
is given by
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o Au-ra) ;
2 sin 0= —
) vV AAV (A—p2A) (A— pZA) TV
W @ @ @
- 1
vV 20R+1)+20/ 22 4+1
Putting
29 A=tan ( T gi)
(29) @ g SPS5
we have, from (28),
1 =‘1~( g _ 90> (T _ ¢
sin 0 1/2 sec® p+2tan g sec ¢ V2 008 sin 2 s1n<4 2)
hence,
29 g="—9,
(29) i

Then, we have the

Theorem II. The curve whose conformal curvature A=const. and

4 5 o
A=2=---=2=0, cuts all the circles passing through two fixed points by

the fixed angle —Z——% where tan p=2, consequently it is a loxodrome.

The four points :;1), (424%, P and Q@ lying on the circle (43

—p%A, the

(6))

points :31) and é are harmonically separated by the points P and @ on

this cirele.



