37. On Green's Lemma.

By Masatsugu Tsujı.
Mathematical Institute, Tokyo Imperial University. (Comm. by S. Kakeya, m.I.A., April 13, 1942.)

1. We will prove the well known Green's lemma in the following generalized form.

Theorem. Let D be a domain on the $z=x+i y$-plane, bounded by a rectifiable curve Γ and $A(z)=A(x, y), B(z)=B(x, y)$ be continuous and bounded functions of z inside D, which satisfy the following conditions:
(i) $\lim A(z), \lim B(z)$ exist almost everywhere on Γ, when z tends to Γ non-tangentially.
(ii) $A\left(x, y_{0}\right)$ is an absolutely continuous function of x on the part of the line $y=y_{0}$, which lies in D, for almost all values of y_{0} and $B\left(x_{0}, y\right)$ is an absolutely continuous function of y on the part of the line $x=x_{0}$, which lies in D, for almost all values of x.
(iii) $\iint_{D}\left(\left|\frac{\partial A}{\partial x}\right|+\left|\frac{\partial B}{\partial y}\right|\right) d x d y$ is finite.

Then

$$
\iint_{D}\left(\frac{\partial A}{\partial x}+\frac{\partial B}{\partial y}\right) d x d y=\int_{\Gamma}\left(A(z) \frac{d y}{d s}-B(z) \frac{d x}{d s}\right) d s,
$$

where ds is the arc element on Γ and the line integral around Γ is taken in the positive sense.

The extension of Green's lemma for a domain D, bounded by a rectifiable curve was first proved by W. Gross ${ }^{1}$ under the condition that $A(z), B(z)$ are continuous in the closed domain $D+\Gamma$ and $\frac{\partial A}{\partial x}, \frac{\partial B}{\partial y}$ are continuous in D. Recently W. T. Reid ${ }^{2)}$ proved another extension under the condition that $A(z), B(z)$ are continuous in the closed domain $D+\Gamma$ and the conditions (ii) and (iii) of our theorem.

We remark that since $A(x, y)$ is continuous, the Dini's derivatives:

$$
\begin{aligned}
& \bar{A}_{x}^{+}(x, y)=\varlimsup_{h \rightarrow+0} \frac{A(x+h, y)-A(x, y)}{h}, \\
& \underline{A}_{x}^{+}(x, y)=\lim _{h \rightarrow+0} \frac{A(x+h, y)-A(x, y)}{h}
\end{aligned}
$$

are B-measurable functions of $(x, y)^{33}$, so that the set E in which $\bar{A}_{x}^{+}(x, y)=\underline{A}_{x}^{+}(x, y)$ is measurable. By the condition (ii), $\frac{\partial A}{\partial x}$ exists al-

[^0]most everywhere on the line $y=y_{0}$, hence from the measurability of E and Fubini's theorem, it follows that $\frac{\partial A}{\partial x}$ exists almost everywhere in D and is a measurable function of (x, y). Similarly for $\frac{\partial B}{\partial y}$.
2. To prove our theorem, we map D conformally on $|w|<1$ by $z=z(w)=f(w)$. Let $|w| \leqq r,|w|=r(0<r<1)$ correspond to D_{r}, Γ_{r} on the z-plane. Since Γ is rectifiable, by F . Riesz' theorem ${ }^{1)}, f\left(e^{i \theta}\right)$ is an absolutely continuous function of θ and $\lim _{r \rightarrow 1} f^{\prime}\left(r e^{i \theta}\right)=f^{\prime}\left(e^{i \theta}\right)$ exists almost everywhere on $|w|=1$ and
\[

$$
\begin{equation*}
\lim _{r \rightarrow 1} \int_{0}^{2 \pi}\left|r f^{\prime}\left(r e^{i \theta}\right)-f^{\prime}\left(e^{i \theta}\right)\right| d \theta=0 \tag{1}
\end{equation*}
$$

\]

Since on $|w|=r, i z f^{\prime}(z)=\frac{d f\left(r e^{i \theta}\right)}{d \theta}$, we have from (1),

$$
\begin{equation*}
\lim _{r \rightarrow 1} \int_{0}^{2 \pi}\left|\frac{d f\left(r e^{i \theta}\right)}{d \theta}-\lim _{r \rightarrow 1} \frac{d f\left(r e^{i \theta}\right)}{d \theta}\right| d \theta=0 . \tag{2}
\end{equation*}
$$

Since by Fatou's theorem ${ }^{2)}, \lim _{r \rightarrow 1} \frac{d f\left(r e^{i \theta}\right)}{d \theta}=\frac{d f\left(e^{i \theta}\right)}{d \theta}$, if $\frac{d f\left(e^{i \theta}\right)}{d \theta}$ exists, which occurs almost everywhere by the absolute continuity of $f\left(e^{i \theta}\right)$, we have from (2),

$$
\begin{equation*}
\lim _{r \rightarrow 1} \int_{0}^{2 \pi}\left|\frac{d f\left(r e^{i \theta}\right)}{d \theta}-\frac{d f\left(e^{i \theta}\right)}{d \theta}\right| d \theta=0 \tag{3}
\end{equation*}
$$

If we put $z\left(r e^{i \theta}\right)=x\left(r e^{i \theta}\right)+i y\left(r e^{i \theta}\right)$, then from (3),

$$
\begin{align*}
& \lim _{r \rightarrow 1} \int_{0}^{2 \pi}\left|\frac{d x\left(r e^{i \theta}\right)}{d \theta}-\frac{d x\left(e^{i \theta}\right)}{d \theta}\right| d \theta=0, \\
& \lim _{r \rightarrow 1} \int_{0}^{2 \pi}\left|\frac{d y\left(r e^{i \theta}\right)}{d \theta}-\frac{d y\left(e^{i \theta}\right)}{d \theta}\right| d \theta=0 . \tag{4}
\end{align*}
$$

By Fubini's theorem and the condition (ii),

$$
\begin{align*}
& \iint_{D_{r}}\left(\frac{\partial A}{\partial x}+\frac{\partial B}{\partial y}\right) d x d y=\int_{\Gamma_{r}}(A(z) d y-B(z) d x) \\
& \quad=\int_{0}^{2 \pi}\left(A\left(r e^{i \theta}\right) \frac{d y\left(r e^{i \theta}\right)}{d \theta}-B\left(r e^{i \theta}\right) \frac{d x\left(r e^{i \theta}\right)}{d \theta}\right) d \theta \tag{5}
\end{align*}
$$

where we put $A\left(z\left(r e^{i \theta}\right)\right)=A\left(r e^{i \theta}\right), B\left(z\left(r e^{i \theta}\right)\right)=B\left(r e^{i \theta}\right)$. Since for $r \rightarrow 1$, $z\left(r e^{i \theta}\right)$ tends to Γ non-tangentially almost everywhere on $|w|=1$ and

[^1]set on $|\dot{w}|=1$, we have by the condition (i), $\lim _{r \rightarrow 1} A\left(r e^{i \theta}\right)=A\left(e^{i \theta}\right)$, $\lim _{r \rightarrow 1} B\left(r e^{i \theta}\right)=B\left(e^{i \theta}\right)$ exist almost everywhere on $|w|=1$. Now
\[

$$
\begin{align*}
& \left|\int_{0}^{2 \pi}\left(A\left(r e^{i \theta}\right) \frac{d y\left(r e^{i \theta}\right)}{d \theta}-A\left(e^{i \theta}\right) \frac{d y\left(e^{i \theta}\right)}{d \theta}\right) d \theta\right| \\
& \quad \leqq \int_{0}^{2 \pi}\left|A\left(r e^{i \theta}\right)\right|\left|\frac{d y\left(r e^{i \theta}\right)}{d \theta}-\frac{d y\left(e^{i \theta}\right)}{d \theta}\right| d \theta \\
& \quad+\int_{0}^{2 \pi}\left|A\left(r e^{i \theta}\right)-A\left(e^{i \theta}\right)\right|\left|\frac{d y\left(e^{i \theta}\right)}{d \theta}\right| d \theta \\
& \quad \leqq M \int_{0}^{2 \pi}\left|\frac{d y\left(r e^{i \theta}\right)}{d \theta}-\frac{d y\left(e^{i \theta}\right)}{d \theta}\right| d \theta \\
& \quad+\int_{0}^{2 \pi}\left|A\left(r e^{i \theta}\right)-A\left(e^{i \theta}\right)\right|\left|\frac{d y\left(e^{i \theta}\right)}{d \theta}\right| d \theta \tag{6}
\end{align*}
$$
\]

where we put $|A(z)| \leqq M$ in D, so that

$$
\left|A\left(r e^{i \theta}\right)-A\left(e^{i \theta}\right)\right|\left|\frac{d y\left(e^{i \theta}\right)}{d \theta}\right| \leqq 2 M\left|\frac{d y\left(e^{i \theta}\right)}{d \theta}\right|
$$

hence by Lebesgue's theorem,

$$
\begin{align*}
& \lim _{r \rightarrow 1} \int_{0}^{2 \pi}\left|A\left(r e^{i \theta}\right)-A\left(e^{i \theta}\right)\right|\left|\frac{d y\left(e^{i \theta}\right)}{d \theta}\right| d \theta \\
& \quad=\int_{0}^{2 \pi} \lim _{r \rightarrow 1}\left|A\left(r e^{i \theta}\right)-A\left(e^{i \theta}\right)\right| \cdot\left|\frac{d y\left(e^{i \theta}\right)}{d \theta}\right| d \theta=0 \tag{7}
\end{align*}
$$

By (4), (6), (7), we have

$$
\lim _{r \rightarrow 1} \int_{0}^{2 \pi} A\left(r e^{i \theta}\right) \frac{d y\left(r e^{i \theta}\right)}{d \theta} d \theta=\int_{0}^{2 \pi} A\left(e^{i \theta}\right) \frac{d y\left(e^{i \theta}\right)}{d \theta} d \theta
$$

Similary

$$
\lim _{r \rightarrow 1} \int_{0}^{2 \pi} B\left(r e^{i \theta}\right) \frac{d x\left(r e^{i \theta}\right)}{d \theta} d \theta=\int_{0}^{2 \pi} B\left(e^{i \theta}\right) \frac{d x\left(e^{i \theta}\right)}{d \theta} d \theta
$$

Hence we have from (5),

$$
\begin{equation*}
\iint_{D}\left(\frac{\partial A}{\partial x}+\frac{\partial B}{\partial y}\right) d x d y=\int_{0}^{2 \pi}\left(A\left(e^{i \theta}\right) \frac{d y\left(e^{i \theta}\right)}{d \theta}-B\left(e^{i \theta}\right) \frac{d x\left(e^{i \theta}\right)}{d \theta}\right) d \theta \tag{8}
\end{equation*}
$$

Let s be the arc length on Γ measured from a fixed point, then by F. and M. Riesz' theorem, $\theta=\theta(s)$ is an absolutely continuous function of s, so that by changing the variable of integration from θ to s in (8), we have

$$
\iint_{D}\left(\frac{\partial A}{\partial x}+\frac{\partial B}{\partial y}\right) d x d y=\int_{\Gamma}\left(A(z) \frac{d y}{d s}-B(z) \frac{d x}{d s}\right) d s, \quad \text { q. e. d. }
$$

[^0]: 1) W. Gross: Das isoperimetrische Problem bei Doppelintegralen. Monathefte f. Math. u. Phys. 27 (1927).
 2) W.T. Reid: Green's lemma and related results. Amer. Journ. Math. 17 (1941).
 3) Saks: Theory of the integral. p. 170.
[^1]: 1) F. Riesz: Über die Randwerte einer analytischen Funktion. Math. Z. 18 (1923).
 2) Fatou: Séries trigonométriques et séries de Taylor. Acta Math. 30 (1906).
 3) F. und M. Riesz: Über die Randwerte einer analytischen Funktion. Quatrième congres des mathématiciens scandinaves à Stockholm, 1916.
