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1. Nevanlinna’s fundamental theorems.

Let E be a bounded closed set of capacity 0 on the z-plane, which
is contained in a bounded domain D and w=w(2)=f(z) be meromorphic
in D—F and have every point of £ as an essential singularity. Since
E is of capacity 0, by Evans’ theorem”, we can distribute a positive
mass du(a) on E, such that

u@)=| og— L —daua), | dua=1, &)
E |z—al| E

is harmonic in D—E and u(z)= at every point of E. Let 0(z) be the
conjugate harmonic function of #(2) and put

t= W@ +i0() — T'(Z) 0@ (2)

This 7(z) plays the similar role as |z| in the theory of meromorphic
functions for |2| << <. Let C, be the niveau curve: 7(2)=const.=7,
then C, consists of finite number of closed curves surrounding E. We

remark that Ldﬁ(z)=5 %Qids=27r SEd/A=27r, where m is the inner
” n

r

normal of C,. We assume that D is bounded by an analytic Jordan
curve C and the domain bounded by C and C, be denoted by 4,. Let
K be the Riemann sphere of diameter 1, which touches the w-plane at
w=0 and put [a,bl= la—b] )

put [, 0= e m a5 ®
zero points of f(x)—a in 4,

n(r, a)=the number of

N(r, a)=ST @dfr ,

0

_1 1
mir, a)= o S c, log w(z), a]

T(r,a)=m(r,a)+N(r,a),

Mdﬁ(z) ’

A(r)=the area on K, which is covered by w=s(z), when z varies in
4, and S(r)=M.
T

1) Evans: Potentials and positively infinite singularities of harmonic funetions.
Monathefte £f. Math. u. Phys. 43 (1936).
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Then the following theorem corresponds to Nevanlinna’s first funda-
mental theorem.
Theorem 1. T(r,a)=T(r)+O(og 7),

where T(¢)=ST S@) g, .
T

Proof. Considering f(z) as an analytic function of ¢,

de

om(r,a) _ am(r,b) ____LS 9 jog| Wb
or or 2w Jec, or w—ae

=,,,JL*S darg_w_b =_1_s dargﬂi—__]:‘.j dargw—b
2mr Jo, w—a 2arJc.+c w—a 2rrJc w—a

— nlr, b)—nlr, a) +o(-1—), or T(r,a)=T(r,b)+0(og ).
r r

Let dw(b) be the surface element on K, then T'(r,a) =1 j KT(r, b)dw(b)
T

+O(log r)= Sr ~‘S—(Q-d'r +O(log 7), q.e.d.

7o r

We will call T(r) the characteristic function and hr'trp;l%%%/r)=p
the order of f(z) about E. ¢
Theorem II. lim L) = o,
> log 7
Proof. If |f(z)—a|=p>0in D—E, then }—(-51:-; is bounded in
D—FE, so that }(—z)lia is regular® and hence f(z) is meromorphic

on E, contradictory to the hypothesis. Hence in D—E, f(2) takes
the values which are dense on K. Let z, be a point on E and
Di>Dy;>-->D,—2 be a sequence of domains tending to z and
e, be the values omitted by f(z) in D,, then e, is non-dense, so that

e=£‘.1en is of first category. Hence there exists a point ¢ which does
=

not belong to e. This o is taken by f(z) infinitely many times about
20 So that lim T@ra) _ and by Theorem I, lim m=oo, g.e.d.
r>  log oo 1OZT

Let A(r) be the number of closed boundary curves of 4,, then®
(¢—2)S(r) _§:§1 n(r, 1)+ A(r)+O(L(r)), where L(r) is the length of
the curve on K, which corresponds to C, and lim £(Q=O. Similarly
as for a meromorphic function for |z|<< o, W: ocoa,n ;roves"’

Theorem III. If Fn%(%)—=p< o, then f(2) takes every value,
>0

2) R. Nevanlinna: Eindeutige analytische Funktionen. p. 132. Satz 2.
3) M. Tsuji: On the behaviour of an inverse function of a meromorphic function
at its transcendental singular point. Proc. 17 (1941), 414,
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except at most p+2 values, infinitely many times in D—E and one of
q>=>2p+4 disjoint simply connected domains on K is covered schlicht
by the Riemann surface of the imverse function of f(z).

Remark 1. If f(z) is regular in D—E and M (r)=ng.lf(z) l,

then M(r) is an increasing function of r and log M(r) is a convex
funection of log 7.
II. Let e be a closed set of positive capacity, then we can dis-

tribute a positive mass dv(a) on e, such that Slog 1 dv(a), Sd»(a)
e [wa] e
=1, is bounded on K. Hence by Theorem I,
() —_-S N, a)du(@)+O0(og ) . 3)

This corresponds to Nevanlinna’s second fundamental theorem.
III. Theorem IV (Noshiro)®. Let f(z) be regular and bounded in

a bounded domain D and on the boundary of D, lim |f(z)| <1, except
a closed set E of capacity 0, then |f(z)| <1 in D.
Proof. Let u(z) be the same as in (1) and put v(z)=log | f(2) | —eu(z)

(e>0). Since u(z)=o on E and f(z) is bounded, limv(z) <0 on the
boundary of D. Since v(z) is sub-harmonic, »(2) <0 in D. Making
e—0, we have |f(z)|< 1 in D.

2. Applications.

Theorem V. Let D be a domain bounded by a Jordan curve C
and E be a closed set of capacity 0 contained in D and f(z) be mero-
morphic in D—E and have every point of E as an essential singularity.
Then (i) f(z) takes every value a, except a-values of capacity 0, in-
finitely many times in D—E. More precisely Erﬁ ﬂ](%')ﬂl
a~values of capacity 0. (i) If further f(z) be of finite order p
and z,=z,(a) be the zero points of f(z)-a and r,(a)=r(z,), then
&, 1 , o & 1
2 i@ (e>0) 1s convergent for all a, while nz=}l (@] %
divergent, except a-values of capacity 0.

The first part of (i) is due to Mr. S. Kametani®.

Proof. (i) Let e be the set of values taken by f(z) finite times
in D—E and suppose that ¢ is of positive capacity and e, be the sub-
set of ¢, every value of which is taken by f(z) at most n-times, then

=1, except

e=§l e.. Hence one of ¢, is of positive capacity, which as well known,
=

contains a closed set of positive capacity. Hence we assume that e, is
a closed set of positive capacity. Then by (8), T'(r) =S N(r, a)dv(a)+

O(log r)=0(log r), which contradicts Theorem II. Hence ¢ is of capacity

4) K. Noshiro: On the theory of the cluster sets of analytic functions. Jour.
Faculty Science. Hokkaido Imp. Univ. 6 (1937-38).

5) S. Kametani: The exceptional values of functions with the set of capacity
zero of essential singularities. Proc. 17 (1941), 429.
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0. The second part can be proved similarly as Frostman®. (ii). Since
the ﬁrst part is evident, we will prove the second part. Suppose that

~ (0 <<p’ << p) is convergent, so that j N(r, a) dr << o for
%=1 [m( a)Jf

,rp’+1
a-values of positive capacity. Then as before there exists a closed set

* N(’;’,a)_ dr<m for aee, Then
ro P

o

e, of positive capacity, such that j

by (3), j T g sd (a,)j N, a) 3. L 0a)=0Q1), or T(r)=00"),

o+ poH

which contradicts the hypothes1s Hence ¢ is of capacity 0.

3. An extension of Gross’ theorem.

We will prove the following extension of Gross’ theorem.

Theorem VI. Under the same condition as Theorem V, let w, be
a regular point of the inverse function ¢(w) of f(z). Then we can
continuate p(w) analytically along half-lines; w—wy,=pe*, till we meet
the image I' of C or indefinitely, except ¢-values of measure 0. If
o(w) be regular on a segment; w—wy=p (0= p,<<p<<py), then start-
ing from w—wo=p, we can continuate e(w) analytically along circles ;
w—wy=pe’ (—oo < ¢ << o) indefinitely, except p-values of measure 0.

Proof. For a given ¢, we continuate ¢(w) analytically along a
half-line ; w—w,=pe®, till we meet I" or a transcendental singularity
of ¢(w), thus we get the principal star region H, with w, as its center.
The edges of H are transcendental singularities of ¢(w). Let the part
of H, which is contained in |w—w,| <R be denoted by Hz, which
corresponds to Dy on the z-plane. Let t=e*""=9(2)¢""® be the
same as in (2) and the part of the niveau curve C,; 7r(z)=r, which
lies in Dz be denoted by C,(R), which corresponds to o, in Hp,
whose sum of lengths be denoted by s(r), then putting f(z)=F(t), we

have (s(r))2= (Sc ([Rg"(t) | rdﬁ)z < 2nr L (I g’(t) [2rdf=2mr d‘;(:r) , where

A(r) is the area of the part of Hy, which contains w, and is bounded

2
by o, Hence j —(f%’:))—drs__ 27A(r) < 272R2. Since r—» o, we infer

that there exists a sequence r,— oo, such that s(r,)—0. Hence the
set of the ¢-values which correspond to the edges of Hj is of measure
0. Taking Ri<<R;<<-—> for R, we see that the set of ¢-values
which correspond to the edges of H is of measure 0. The second part
can be proved similarly. q.e.d.

From Theorem VI, we see that every boundary point of the
Riemann surface F' of ¢(w) is an accessible point. Hence if f(2) +a
in D—EFE, then a is a boundary point of F', so that there exists a curve
I’ on F ending at a, which corresponds to a eurve L on the z-plane
ending at a point of E. Hence we have

Theorem VII (Cartwright-Noshiro)”. Under the same condition as

6) Frostman: Potentiel d’equilibre et capacité des ensembles. Lund 1935.

T7) Cartwright: On the asymptotic values of functions with a non-enumerable
set of essential singularities. Jour. London Math. Soc. 11 (1936).

Noshiro. l.c. 4).
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Theorem V, if f(z) ==a in D—E, then there exists a curve L in D—FE
ending at a point of E, such that f(z) —a along L.

4, Functions of class (U).

The functions of class (U) are functions which satisfy the condi-
tions: (i) f(2) is regular and |f(2)|<<1 in |z|<<1l. (i) |f®)|=1
almost everywhere on |z|=1,

Theorem VIII. Let w=f(z) belong to class (U) and ¢(w) be its
inverse function defined in |w|<<1 and w, be a regular point of e(w).
Then we can continuate o(w) analytically along half-lines ; w—w,= pe®,
tll we meet |w|=1, except ¢-values of measure 0. Let p(w) be regular
on a segment; w—we=p 0=p<<p<<p) and |w—w,|<<pg, be con-
tained in |w|<<1. Then we can continuate ¢(w) analytically along
circles; w—wo=pe? (—oo <¢<<o) indefinitely, except p-values of
measure 0.

Proof. As in the proof of Theorem VI, let Hz be the part of the
principal star region H with center at w, which is contained in a
% <R<1. Let Hg correspond to Dy in |2<<1. Then

—Wo
the set of transcendental singularities of ¢(w) which lie on the boundary
of Hp, corresponds to a closed set E of measure 0 on |z|=1. Let the
set of open ares {s.} be the complementary set of E on |z|=1. Then
there exists® a positive function F'(6) on |z|=1, such that F(f) is

2
continuous on s, and F(f)=c on E and So F(0)do << . Let w(z) be

the Poisson integral with the boundary function F'(4), then u(z) tends
to infinity, when 2z tends to any point of E. Let 8(z) be the conjugate
harmonic function of u(z) and put t=e**"?=1r(2)e®, By means of this
t, we can prove similarly as Theorem VI

Similarly as Theorem VII, we have

Theorem IX (Seidel)®. Let f(z) belong to class (U) and f(z)=+=a
(Ja|<<1) in |2|<<1, then there exists a curve L ending on |z|=1,
such that f(z) > a along L.

5. Imverse function of f(z) in $1.

Let w=w(z)=f(2) satisfy the conditions in S1 and z=gp(w) be its
inverse function. A od-neighbourhood U of w, on the Riemann surface
F of ¢(w) is the connected part of F, which lies in [w,w,]<<d and
has w, as an inner point or a boundary point. Let U correspond to
4 on the z-plane, then [f(2),w]<<é in 4 and [f(2), wg]=0 on the
boundary of 4, except the points on E. We assume that w, is an
accessible boundary point of F, such that there exists a curve I" on F
ending at w, which corresponds to a curve L in 4 ending at 2z, on E.
Let t=e*""=1(2)¢"*” be the same as in (2) and the part of 4, such
that r(z) <, r(z)=r be noted by 4,, 6, respectively. We put A(r; 4)=
the area on K, which is covered by w=f(2), when z varies in 4,,
S(r; )= A(r; )

T where 76 is the area of [w, wy] <6 on K, n(r, a; )=
T

circle ;

8) Fatou: Séries trigonométriques et séries de Taylor. Acta Math. 30 (1906).
9) Seidel: On the distribution of values of bounded analytic functions. Trans.
Amer. Soc. 36 (1934).
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the number of zero points of f(z)—a in 4,, where [a, w,] <9,

N(r,a; A)=5r nr, a; ) dr,
70 r

m(r, a; d)= 1 S log[ () ]dﬁ(z),

T(r,a; )=m(r, a; )+ N(r, a; 4),

L(r)=the length of the curve on K, which corresponds to 4,.

Then exactly as I have proved® for a meromorphic function for
|z| << e, we have

Theorem X. T(r,a; A)=T(r;a)+o<g

7o

Lr). dr) +O(log 7),
r

where T(r;d)= ST Mdh‘ .
70 r
L(r)=0(1/ T2r; 4) log 7') for all r, (4)
Lr)=0(v'T(r; 2) log T(r; 4)), (5)

except certain intervals I, such that Z‘.j dlog r << co.

We will call T'(r; 4) the characteristic functlon and lim %(L—A)«
r> og r
=p the order of f(2) in 4.
Theorem XI. lim Tr:d) _
> logr
Proof. We have two cases. (i) The branch of 6, which meets L,
always meets the boundary A of 4. Let 0, meets L at 27 and A at
Z’. Since u(z)=co on E, z” is not a point of E, so that f(z") lies on
[w, wel=0 and since f(z) tends to w,, we have L(r) >d >0 for r = .
r 2
Since s LIf(lﬂ—olréZnA(r;A)“’, we have lim A(r; d)=c. (ii) There
70 r r>0
exists a sequence of points 2,->2, on L, such that the branch of 4,
which meets L at z, does not meet A, so that infinitely many disjoint
boundary elements of 4 cluster at z,, Hence the Riemann surface F'
of p(w) contains infinitely many sheets, Fi, F3, .... By Theorem VI,

the set ¢, of the boundary points of F, is non-dense, so that e=§‘ien

is of first category, hence there exists a point a in [w, wo] <<d, which
does not belong to e. This @ is a regular point of ¢(w) on each Fj,.
Consider the principal star region H, on F),, with center at a. F' can
be considered as obtained by connecting H, along the boundaries of
H,. By Theorem VI, the measure of H, is #é% Since there are
infinitely many sheets, liglo A(r; )=, From (@), (ii)), we have

10) M. Tsuji: On the behaviour of an inverse function of a meromorphic func-
tion at its transcendental singular point, III. Proc. 18 (1942), 132.
11) M. Tsuji. Le. 10).
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tim L0359 _ o,
e logr

Theorem XII. Under the same condition as Theorem V, let w, be
an accessible transcendental singularity of the inverse function ¢(w) of
f) and a o-neighbourhood U of w, correspond to 4 on the z-plane.
Then (i) f(z) takes every value a in [w, wo] << infinitely many times in
4, except a-fvalues of capacity 0. (i) If further £(2) be of finite order p

wn 4, then 2_1[ " )],, — (e>0) s convergent for all a in [w, we] <o,
while 21[ @ )] el divergent, except a-~values of capacity 0, where
7=1 [r

r(@)=7(2,), 2, being the zero points of in A.

Proof. Suppose that f(z) takes in 4 finite times a-values which be-
long to a set e of positive capacity. Then as before f(z) takes at most
n-times a-values which belong to a closed set e, of positive capacity.

Then by Theorem X, (8) and (5), we have T(r’A)=S N(r, a; )dv(a)

n O( S L(r) dr) +0(log 1) =0(v'T(r; d) log T(r; 4)) + O(log ), outside

I, Whlch contradicts Theorem XI. (ii) can be proved similarly as
Theorem V by means of (4).

Theorem XIII. Under the same condition as Theorem XII, if
f(2)-a, where [a,w]<<d, has only finite number of zero points in 4,
then there exists a curve A ending at a point of E, such that f(z)—a
along A.

Proof. Since, by Theorem XII, the Riemann surface F' of the
inverse function ¢(w) of f(2) contains infinitely many sheets, a is a
boundary point of F, which by Theorem VI, is an accessible boundary
point of F. Hence there exists a curve on F ending at a, which
corresponds to A on the z-plane ending at a point of E, along which
f(2) tends to a.



