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109. On the Distributivity of a Lattice
of Lattice-congruences.

By Nenosuke FUNAYAMA and Tadasi NAKAYAMA.
Sendai Military Cadet School and Nagoya Imperial University.
(Comm. by T. TAKAGI, M.I.A.,, Nov. 12, 1942.)

In a previous note® one of us studied the structure of the lattice
formed of congruences of a finite-dimensional lattice to prove that it is
a distributive lattice. In the following we want to show that the con-
gruences of any lattice, not necessarily finite-dimensional, form always
a distributive lattice. The proof is quite simple and direct. Namely:

Let L be a lattice and let @={p} be the (complete) lattice of its
congruences; we mean by ¢;=> ¢, that®? a=b mod. ¢, implies a=b
mod. ¢,. Thus a=b mod. ¢, ¢, when and only when a and b are
congruent both mod. ¢; and mod. ¢, while a=b mod. ¢, ™ ¢, is equi-
valent to that there exists a finite system of elements ¢, ¢y, ..., ¢, in
L such that

(1) a=cilp), e=clpy), :=cp), -+, cnaa=caler), . =b(ps).

Consider arbitrary three congruences ¢, ¢ and ¢s. Obviously

(1) U s < (P10 ) V(2w @s). In order to prove the converse
inclusion, assume

(2 a=b mod. (p1 M ¢2)\w @5

for a certain pair a >b of elementsin L. Then a=b mod. ¢; and there
is a finite set of elements ¢, ¢y, ..., ¢, such that (1) holds. Now, the
transformation

c—=x=@Na)ub

maps L onto the interval [b, a], and it preserves any congruence rela-
tion. On applying this tranformation to (1), we see that we may
assume without loss of generality that

a=c;=b (t=1,2,...,n).

But then, since a=b mod. ¢, the elements a,b and ¢; are all congruent
mod. ¢;. Hence

a=cp1\U @), ci=c92 U @), €2 = i1 @), .-

ceey Cp1=0Cp (fpl v ¢3)’ anb(SOZ v 503) ]
which means
a=b mod. (¢ ¢3) M (g2 93).

Since this is the case for every pair a >b in L satisfying (2), we have
(o1 02) U @3 = (1 U @3) N (92U @s) a8 desired. Thus

1) N. Funayama, On lattice congruence, Proc. 18 (1942).
2) Contrary to the previous note, l.c. 1).
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Theorem. The totality of the congruences of any lattice forms a
dastributive lattice.

Remark 1. By the same argument we find that in the complete
lattice @ of lattice-congruences the infinite distributive law

(f;\ p) V=N (p. v 9)

is valid. But the dual infinite distributivity does not hold in general,
as the following example shows:

Let L be the interval [0,1] of real numbers considered as a linearly
ordered lattice. Let S be the set of all the elements (namely, numbers)
in L whose triadic expansions have 1 as a coefficient at least once. S
consists of infinitely many mutually disjoint intervals (closed on the
left and open on the right). Then let ¢ be a congruence of L which
is obtained by defining two numbers belonging to one and the same
interval in S to be congruent. On the other hand, let T, be, for each
natural number 7, the set of numbers a in L such as

-1 _ 1 <a<§g’+1 1

3n 3n+l = = 3‘1—1._-__!— 3n+1

(V=0’ ly cety 311,——1) .

Then T consists of 3" !'+1 mutually disjoint intervals, and the corres-
ponding congruence ¢, can be introduced similarly as above. Since the
lengths of intervals in 7, tends to 0 (as n— ), we have U ¢,=1;

here I means the unit-congruence (=equality). Thus
(v Pn) OV P=0.

On the other hand, L is, for each n, covered by S and T,, and two
elements in L are connected by a finite number of intervals in S and

T.. Hence ¢, N ¢ is the 0-congruence (by which all the elements are
congruent). Therefore

\;(sonf\so)=0.

Remark 2. Our theorem gives, as K. Yosida kindly pointed out,
also a new proof to the fact that normal subgroups of a lattice-ordered
group G form a distributive lattice; by a normal subgroup we mean an
invariant subgroup which induces a congruence of G as a lattice-ordered
group. For, a normal subgroup H gives certainly a congruence ¢y of
G simply as a lattice, and it is easy to see that the join ¢z U ¢z and
the meet ¢y M @5, of the congruences ¢y and ¢y, G being considered
again simply as a lattice, are respectively the congruences induced by
the meet and the join of the normal subgroups H, H’.



