106. An Abstract Integral (IX).

By Noboru Matsuyama.
Mathematical Institute, Tohoku Imperial University, Sendai.
(Comm. by M. Fujiwara, m.i.a., Nov. 12, 1942.)
Methods defining integral without use of measure was studied by W. H. Young, P. J. Daniel ${ }^{1)}$, S. Banach ${ }^{2}$, and H. H. Goldsteine ${ }^{3)}$, S. Izumi ${ }^{4}$ extended Banach's method to the case of vector lattice. Many authors defined Lebesgue integral as an extension of Riemann or "abstract" Riemann integral. In this paper, extending Goldsteine's method we give a "Lebesgue integral" as an extension of a certain non-negative functional on a vector lattice.
§ 1. Let Z be a vector lattice, and X a sublattice of Z which has the following properties: for any $z \in \boldsymbol{Z}$ there exists at least one $x \in X$ such as $|z| \leqq x$. Let $f(x)$ be a linear non-negative functional on the domain X.

If we define the functionals

$$
f^{0}(z) \equiv \underset{z \leq x \in X}{\mathrm{gr} . \mathrm{l.b}} f(x), \quad f_{0}(z) \equiv \operatorname{l.m}_{z \geq x \in X} \mathrm{u} . \mathrm{b} f(x)
$$

on Z, then we have
(1.1) $\quad f_{0}(z) \leqq-f^{0}(-z)$.
(1.2) $\quad f_{0}(z) \leqq f^{0}(z)$.
(1.3) $f_{0}\left(z_{1}+z_{2}\right) \geqq f_{0}\left(z_{1}\right)+f_{0}\left(z_{2}\right), \quad f^{0}\left(z_{1}+z_{2}\right) \leqq f^{0}\left(z_{1}\right)+f^{0}\left(z_{2}\right)$.
(1.4) $f_{0}(c z)=c f_{0}(z)$ and $f^{0}(c z)=c f^{0}(z)$, for any real non-negative number c.

$$
\begin{align*}
f_{0}\left(z_{1}\right) & +f_{0}\left(z_{2}\right) \leqq f_{0}\left(z_{1} \wedge z_{2}\right)+f_{0}\left(z_{1} \vee z_{2}\right) \leqq f^{0}\left(z_{1} \wedge z_{2}\right) \tag{1.5}\\
& +f^{0}\left(z_{1} \vee z_{2}\right) \leqq f^{0}\left(z_{1}\right)+f^{0}\left(z_{2}\right)
\end{align*}
$$

$$
\begin{equation*}
f^{0}(|z|)-f_{0}(|z|) \leqq f^{0}(z)-f_{0}(z) \tag{1.6}
\end{equation*}
$$

We shall prove the last two only. If $x_{1} \geqq z_{1}, x_{2} \geqq z_{2}, x_{1} \in X, x_{2} \in X$, then we have $x_{1} \vee x_{2} \geqq z_{1} \vee z_{2}$ and $x_{1} \wedge x_{2} \geqq z_{1} \wedge z_{2}$, and then

$$
\begin{array}{ll}
f^{0}\left(z_{1} \wedge z_{2}\right)+f^{0}\left(z_{1} \vee z_{2}\right) \leqq f\left(x_{1} \wedge x_{2}\right)+f\left(x_{1} \vee x_{2}\right)=f\left(x_{1}+x_{2}\right)=f\left(x_{1}\right)+f\left(x_{2}\right), \\
& f^{0}\left(z_{1} \wedge z_{2}\right)+f^{0}\left(z_{1} \vee z_{2}\right) \leqq f^{0}\left(z_{1}\right)+f^{0}\left(z_{2}\right) . \\
\text { Similarly } & f_{0}\left(z_{1} \wedge z_{2}\right)+f_{0}\left(z_{1} \vee z_{2}\right) \geqq f_{0}\left(z_{1}\right)+f_{0}\left(z_{2}\right) .
\end{array}
$$

Hence we have the relation (1.5). In the next place by

$$
|z|=z \vee(-z), \text { and }-|z|=(-z) \wedge z
$$

1) Annals of Mathematics, 19 (1918).
2) S. Saks: The theory of integral.
3) Bull. of the Amer. Math. Soc., 47 (1941).
4) S. Izumi: Isōsūgaku 3-2, (1941).
we have

$$
\begin{aligned}
& f^{0}(|z|)-f_{0}(|z|)=f^{0}(|z|)+f^{0}(-|z|)=f^{0}(z \vee(-z)) \\
& \left.\quad+f^{0}((-z) \wedge z)\right) \leqq f^{0}(z)+f^{0}(-z)=f^{0}(z)-f_{0}(z)
\end{aligned}
$$

Thus we get (1.6).
Let us put $Y \equiv\left(y \in Z ; f^{0}(y)=f_{0}(y)\right)$, and we write $F(y) \equiv f^{0}(y)=f_{0}(y)$ for $y \in Y$. Then $F(y)$ is evidently a non-negative functional in Y.

Theorem 1. For any real number c and any $y \in Y$, we have $c y \in Y$ and $F(c y)=c F(y)$.

Theorem 2. For any $y_{1} \in Y$ and $y_{2} \in Y$, we have $y_{1}+y_{2} \in Y$ and $F\left(y_{1}+y_{2}\right)=F\left(y_{1}\right)+F\left(y_{2}\right)$.

Theorem 3. For any $y \in Y$, we have $|y| \in Y$ and $|F(y)| \leqq F(|y|)$.
Proof. By the use of (1.6) we have immediately $f^{0}(|y|)=f_{0}(|y|)$, and so $y \in Y$ implies $|y| \in Y$. Besides we have

$$
-F(|y|)=F(-|y|) \leqq F(y) \leqq F(|y|)
$$

or

$$
|\boldsymbol{F}(y)| \leqq F(|y|)
$$

(1.9) If y_{1} and $y_{2} \in Y$ then $y_{1} \vee y_{2}$ and $y_{1} \wedge y_{2}$ are contained in Y.
(1.10) If $x \in X$ then $F(x)=f(x)$.

From the above discussion we see that the system Y is a vector lattice and $F(y)$ is a linear non-negative functional and Y is an extension of X. If we define $F^{0}(z)$ and $F_{0}(z)$ by F and Y, similarly as f_{0} and f^{0} was defined by f and X, then we have

$$
\begin{equation*}
F^{0}(z)=f^{0}(z) \quad \text { and } \quad F_{0}(z)=f_{0}(z) \tag{1.11}
\end{equation*}
$$

Proof. Let z, y and x be elements of Z, Y and X, respectively, such as $z \leqq y \leqq x$. Then we have $F^{0}(z) \leqq F(y)=f^{0}(y) \leqq f(x)$, and then $F^{0}(z) \leqq f^{0}(z)$. On the other hand by the definition, there exists an element y of Y such that $y \geqq z$ and $F^{0}(z)>F(y)-\varepsilon=f^{0}(y)-\varepsilon \geqq f^{0}(z)-\varepsilon$ or $F^{0}(z) \geqq f^{0}(z)$. That is $F^{0}(z)=f^{0}(z)$. Similarly $F_{0}(z)=f_{0}(z)$.
§2. We will now introduce a new condition $(C): Z$ is a σ-complete vector lattice, and $x_{n} \in X$ and $x_{n} \uparrow z$ imply $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f^{0}(z)$.
(2.1) If $x_{n} \in X$ and $x_{n} \uparrow z$, then $z \in Y$ and $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=F(z)$.

Proof. $\lim _{n} f\left(x_{n}\right)=f^{0}(z) \geqq f_{0}(z) \geqq \lim _{n} f\left(x_{n}\right)$, and so $\lim _{n} f\left(x_{n}\right)=F(z)$.
Theorem 4. If $y_{n} \in Y$ and $y_{n} \uparrow y$, then $y \in Y$ and $F(y)=\lim _{n} F\left(y_{n}\right)$.
Proof. We can choose an element $x_{n} \in X$, such that for arbitrary $\varepsilon x_{n} \geqq y_{n}$ and $F\left(y_{n}\right)>f\left(x_{n}\right)-\frac{\varepsilon}{2^{n}}$. Now let a be a fixed element of X such as $a \geqq y$. Then it is evident that such element exists. We can suppose that $X_{n} \leqq a$, for otherwise it suffices to consider $a \wedge x_{n}$ instead of x_{n}.

Putting $x_{n}^{\prime} \equiv \bigvee_{n-1}^{n} x_{n}$ and $\varepsilon_{n} \equiv\left(\frac{1}{2}+\frac{1}{2^{2}}+\cdots+\frac{1}{2^{n}}\right) \varepsilon$, we have $F\left(y_{n}\right)>$ $f\left(x_{n}^{\prime}\right)-\varepsilon_{n} \geqq f\left(x_{n}^{\prime}\right)-\varepsilon$. For, this is true for $n=1$. We assure that this is true for $n-1$. By $x_{n}^{\prime} \in X$ and $\left(x_{n-1}^{\prime} \wedge x_{n}\right) \geqq y_{n-1}$ we have

$$
f\left(x_{n-1}^{\prime} \wedge x_{n}\right) \geqq F\left(y_{n-1}\right)>f\left(x_{n-1}^{\prime}\right)-\varepsilon_{n-1}
$$

On the other hand

$$
x_{n-1}^{\prime}+x_{n}=\left(x_{n-1}^{\prime} \vee x_{n}\right)+\left(x_{n-1}^{\prime} \wedge x_{n}\right)=x_{n}^{\prime}+\left(x_{n-1}^{\prime} \wedge x_{n}\right),
$$

so that

$$
f\left(x_{n-1}^{\prime}\right)+f\left(x_{n}\right)=f\left(x_{n}^{\prime}\right)+f\left(x_{n-1}^{\prime} \wedge x_{n}\right)>f\left(x_{n}^{\prime}\right)+f\left(x_{n-1}^{\prime}\right)-\varepsilon_{n-1}
$$

or

$$
f\left(x_{n}\right)>f\left(x_{n}^{\prime}\right)-\varepsilon_{n-1} .
$$

This is

$$
F\left(y_{n}\right)>f\left(x_{n}\right)-\frac{\varepsilon}{2^{n}}>f\left(x_{n}^{\prime}\right)-\varepsilon_{n-1}-\frac{\varepsilon}{2^{n}}=f\left(x_{n}^{\prime}\right)-\varepsilon_{n},
$$

and so

$$
F\left(y_{n}\right)>f\left(x_{n}^{\prime}\right)-\varepsilon_{n}
$$

Since $\quad x_{n}^{\prime} \uparrow x^{\prime}, \quad x^{\prime} \in Y$ by (2.1), and so $x^{\prime}=\bigvee_{n=1}^{\infty} x_{n}^{\prime} \geqq \bigvee_{n=1}^{\infty} y_{n}=y \geqq y_{n}$. Consequently

$$
F\left(x^{\prime}\right) \geqq F^{0}(y) \geqq F_{0}(y) \geqq F\left(y_{m}\right)>f\left(x_{m}^{\prime}\right)-\varepsilon_{m}>f\left(x_{m}^{\prime}\right)-\varepsilon,
$$

or

$$
F\left(x^{\prime}\right)=F^{0}(y)=F_{0}(y)=\lim _{m} F\left(y_{m}^{\prime}\right) .
$$

Instead of (C), if we suppose that $\left(C^{\prime}\right): Z$ is a σ-complete vector lattice and $0 \leqq x_{n} \in X, X_{n} \uparrow z$ imply $\lim _{n} f\left(x_{n}\right)=f^{0}(z)$, then we have

Theorem 4'. If $0 \leqq y_{n} \in Y$ and $y_{n} \uparrow y$, then $y \in Y$ and $F(\mathrm{y})=$ $\lim F\left(y_{n}\right)$.

Theorem 5. If $y_{n} \in Y, \lim _{n} y_{n}=y,\left|y_{n}\right| \leqq \bar{y}(n=1,2, \ldots)$, and $\bar{y} \in Y$, then $y \in Y$, and $\lim _{n} F\left(y_{n}\right)=\stackrel{n}{F}(y)$.

Proof. We have

$$
\bigvee_{k=n}^{\infty} y_{k}=\lim _{m} \bigvee_{k=n}^{m} y_{k}, \quad \text { and } \quad\left(\bigvee_{n}^{m} y_{k}\right) \uparrow\left(\bigvee_{n}^{\infty} y_{k}\right)
$$

consequently $\bigvee_{n}^{\infty} y_{k} \in Y$.
Moreover $\left(\bigvee_{n}^{\infty} y_{k}\right) \downharpoonright y($ as $n \rightarrow \infty)$, so that $-\bigvee_{n}^{\infty} y_{k} \uparrow-y$ or $y \in Y$.

$$
\lim _{n} F\left(-\bigvee_{n}^{\infty} y_{k}\right)=F(-y) \quad \text { or } \quad \lim _{n} F\left(\bigvee_{n}^{\infty} y_{k}\right)=F(y)
$$

That is, for any $\varepsilon>0$ there exists $n_{1}(\varepsilon)$ such that

$$
F\left(y_{\mu}\right)<F\left(\bigvee_{n}^{\infty} y_{k}\right)<F(y)+\varepsilon \text { for all } n \geqq n_{1}(\varepsilon),
$$

or

$$
F\left(y_{n}\right)<F(y)+\varepsilon \text { for all } n \geqq n_{1}(\varepsilon) .
$$

Similarly we have

$$
F\left(y_{m}\right)>F(y)-\varepsilon \text { for all } m \geqq n_{2}(\varepsilon) .
$$

So that $\quad\left|F\left(y_{p}\right)-F(y)\right| \leqq \varepsilon$ for $p \geqq \max \left(n_{1}, n_{2}\right)$.
By above theorems 1-5, we see that the functional F has the all properties of the Lebesgue integral ${ }^{1)}$. That is, starting from the system X and functional $f(x)$ on X, we can reach the functional $F(y)$ which has the properties of the integral, and the class of integrable functions Y contains X.

1) Fatou's theorem is modified.
