
532 [Vol. 18,

104. A Note on Infinite 5eries.

By Shin-ichi IZUMI and Gen-ichiro SUNOUCHI.
Mathematical Institute, Tohoku Imperial University, Sendal.

(Comm. by M. FUJIWARA, M.!.A., Nov. 12, 1942.)

Introduction. Theorem A. If $he infinite series a. converges and
a, 0 (a, tends o zero monotonously), then na-O.

This is the classical theorem due to Olivier. This is generalized
by Cesro>, de la Vall6e Poussin>, Rademacher>, Ostrowski’>, Knopp,
Izumi’ and Meyer-KSnig. Ostrowski’s theorem reads as follows.

Theorem B. If a O, then a. converges when and only when
s. na. converges.

This theorem contains Olivier’s theorem. On the other hand Cesro
proved that

Theorem C. Le$ p. and q. be he number of positive and nega-
tive terms in

s a+a+... +a
If

_
a, converges and a, O, then (p,-q,)a,,,,-)O.

These theorems suggest us the following theorem.
Theorem D. If a,l O, a converges when and only when

s-(p-q,) a, converges as n--)

But we can show that this is not true in general ( 3). Therefore
in order to get the theorem of this type, we need some additional
conditions. We give two types of conditions. That is, the one is con-
cerning the magnitude of a. and the other is concerning the sign of
a,. This is given in Theorem 1 and 2. Conditions in the theorem are
the best possible ones in a sense. Incidentally we give a new proof of
all above theorems ( 1). Finally we remark that our problem is trans-
formed into that of function theory.

1. Proof of Theorem C. The identity

(a+a+... +a)/
+ +

is well known and is easy to verify. Put a,.[al.e., .=l/laI,
then the left hand side of (1) becomes

(e,+e+...e) a I=(p-q,,) a,, I. (2)

Since 2 o, by the Toeplitz theorem
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+ + -> s

if s.,-s. Thus (1) gives the required result.
Proof of Theorem B. By (1) and (2) (when a. > 0)

If a. > 0, then s,,, converges or diverges to infinite. By the regularity
of summation-method, we get the theorem.

Similarly we can prove theorems due to de la Vall6e Poussin,
Rademacher, Knopp and Izumi.

2. Theorem 1. If a . 0 and 1/( a. [-’-I a_ -) 0 (1), then
s,,- (p,,,- q) a., 0 implies s- O.

Proof. By the Tauberian theorem, if ,,a./(.-2._)=O(1) then
the right hand side of (3) converges. Now

Thus we get the theorem.

Theorem 2, If (p.- q.)- converges and (p,,- q,,,) (p,,.- q.,)-=

tends to zero, then s,,-(p,,-q.) a., --, 0 implies s,,- O.
Proof. If we put s.(p.- q.)t., then

s,,- (p.- q.) a. =s.- (p.-

(p. q.) t., e,.(p.- q.,) ((p., q,,) t.,

e.(p. q.) (p._,- q._) (t._,-
Thus we have

By the convergence of (p,,,-q.)-=, t.. tends to a constant A. And
then s,,=(p.-q.)A+o(1). That is a.A which gives A=0. There-
fore s.--> 0.

3. We will now give an example that a,,] 0,
[a [--)0 do not imply s..- 0. Let 0 < a < 1/2, [n_]p. Let a.
in n n n+2p-1 and 1In" otherwise. Then ]a 0. Let us define
p,,-q such that the curve of p.-q. inscrives (-1)"-%" as closely
possible in n+2p-1 < <n+ and is linear otherwise More precisely,
let e.l. Further let ee=-l, e,,= +1, e=--1, alternatively till
In"] becomes 2. If In?I=2, e,_=+l then e,,,=e.,+=e,+=--1, and
otherwise e.,+=e.,+=e.,+a=-l. For larger n, e. is defined +1 or
-1, alternatively till In] becomes 3. If [ ]=3, e.=_n" 1, then
e.,=e.+, + 1 =e.,+= + 1, and otherwise e.+, =e.,+= =e.+= + 1.
For larger n, e., is defined + 1 or -1 alternatively till In"] becomes 4.
Thus proceeding we can define (e..) such that p..,-q., =0 (n) and
oscilates between n and -n".

If we put a.e,, a,,,, , then .%,=a,+a+...+a,,, oscilates boundedly.
For In"] terms are of the same sign in the neighbourhood of n such
that n" becomes integer and their sign is (.-1)""- and otherwise
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alternative. Thus s- (- 1)-(2r- 1)a,, is alternative series.
vl/a-

(2-1) (2- 1)/ 2 1/v. Hence s oscillates boundedly.
On the other hand

2,=2_= 1/[ a, l- 1/] a,_ [=n--(n 1)=an-X/o (1).

If we replace s, by s;=s, , (-1)-x(2,-1)a in
lla<:,

:Now

then the resulting sequence converges. If s,, by s-:-
_
(-1)-(2 1)a,

yl/a<n,
then the resulting sequence also converges. Thus s.,,-(p.,,-q,)[a,I con-
verges.

If 1 :>a ..!_ it is enough to take a subsequence of (n,,) with
--2

sufficiently large gap and follow above method concerning such sub-
sequence.

This example shows that Theorem 1 and 2 are best possible in a
sense. For, if sign of a are given arbitrarily, then the magnitude of
a. can not be of order 1/n"(a <2 1). Condition of Theorem 1 becomes
a, 1In if a I= 1In. On the other hand if the magnitudes of a

are given arbitrarily then p,-q, cannot be of order n"(a <:. 1).
4. Let f(z) be an analytic function defined in the unite circle,

r, r, ..., r, and p, fl, ..., p be the absolute value of zeros and poles of
f(z) in zl <:: R(R <: 1). By the Jensen’s formula

Without loss of generality we can suppose that f(0)=l. If we arrange
r and p. in the increasing order of magnitude and put log (1/r)=-a,
log p- a, then

2

by the notation used above. Thus the relation of

lim __!.
R-->I 2= j0

lim s, and

is given by our theorem.


