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104. A Note on Infinite Series.

By Shin-ichi Izumi and Gen-ichiro SUNOUCHI.
Mathematical Institute, Tohoku Imperial University, Sendai.
(Comm. by M. FUJIWARA, M.I.A, Nov. 12, 1942.)

Introduction. Theorem A. If the infinite series > a,, converges and
a, | 0 (a, tends to zero monotonously), then na,—> 0.

This is the classical theorem due to Olivier. This is generalized
by Cesaro®, de la Vallée Poussin®, Rademacher®, Ostrowski®, Knopp®,
Izumi® and Meyer-Konig”. Ostrowski’s theorem reads as follows.

Theorem B. If a, |0, then 3> a, converges when and only when
S, —MNa, converges.

This theorem contains Qlivier’s theorem. On the other hand Ceséiro
proved that

Theorem C. Let p, and q, be the number of positive and nega-
tive terms in

=G+ apt o+ a,.

If 3 a, converges and |a,|| 0, then (p,—q.)a,— 0.

These theorems suggest us the following theorem.

Theorem D. If |a,|l0, Sa,. converges when and only when
Su— (Du—0an) | an| converges as n—> o,

But we can show that this is not true in general (§3). Therefore
in order to get the theorem of this type, we need some additional
conditions. We give two types of conditions. That is, the one is con-
cerning the magnitude of a, and the other is concerning the sign of
a,. This is given in Theorem 1 and 2. Conditions in the theorem are
the best possible ones in a sense. Incidentally we give a new proof of
all above theorems (§1). Finally we remark that our problem is trans-
formed into that of function theory.

§$1. Proof of Theorem C. The identity

(/\11(11+12a2+ R )nan)/ln
=8,— ((e— W81+ (a— A)sa++ + (hu— Au-1)80-1) [An Q)

is well known and is easy to verify. Put a,=|a.|-e, L=1/|a,|,
then the left hand side of (1) becomes

(atete)|a.|=p.—a.) | a.]. 2)
Since 4, T e, by the Toeplitz theorem
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(32"‘ 2081+ (23— 29)spt+ o+ + (X — An—l)%-l)/’“n —8

if s,—s. Thus (1) gives the required result.
Proof of Theorem B. By (1) and (2) (when a,>0)

8n— Ny = ((/12 — )81+ (A — szt -+ 4 (A — ln—l)sn—l)/ln . (3)

If a,>0, then s, converges or diverges to infinite. By the regularity
of summation-method, we get the theorem.

Similarly we can prove theorems due to de la Vallée Poussin,
Rademacher, Knopp and Izumi.

$2. Theorem 1. If |a,]| [0 and 1/(|a, | —|au1|™)=0(1), then
8= (Pn—q.) | a,| — 0 implies s, — 0.

Proof. By the Tauberian theorem, if 2,,/(2,—A,-1)=0 (1) then
the right hand side of (3) converges. Now

lnan/(ln - ln-—l) = en/(ln - ln—l) = 1/(| On |_1 - ‘ Ap-1 l .—1) .
Thus we get the theorem.

Theorem 2. If >)(pn—au)™* converges and (p,—q..) i(zo«m—qm)‘2

tends to zero, then s,—(Prn—an) | @n|— 0 mplies s,— 0.
Proof, 1If we put s,=(p.—q.)t., then

8y (p'n - Qn) ! Ay, I =8 (pn - qn)ena/n
= (pn - Qn) tn— en(pn - Qn) ((pn - Qn) tn— (pw—-l Q- l)t i —l')

= 6'11,(pn - qn,) (pn—l - q'n—l) (tn——l - tn) .
Thus we have

tn-1=tn=0((Ba =) (D1~ @u1) ") =0((Pu—1a)2) .

By the convergence of > (p,.—q.)% t. tends to a constant A. And
then s,=(p,—q.)A+0(1). That is a,— A, which gives A=0. There-
fore s,— 0.

§3. We will now give an example that |a,|} 0, s,—(P.—q,)-
| @ | — 0 do not imply s,->0. Let 0 <<a<<1/2, [n%.,]=p. Let|a,|=1/p
in ng <n<ni+2p—1 and 1/n* otherwise. Then |a, || 0. Let us define
D»—Qqx, such that the curve of p,—¢q, inscrives (—1)?71»% as closely as
possible in n%+2p—1 <<y <<n%,; and is linear otherwise. More precisely,
let e;=1. Further let e;=—1, es=+1, e,=—1, ... alternatively till
[n“] becomes 2. If [nf]=2, e,-1=-+1 then e, =€y +1=€n2=—1, and
otherwise e,,+1=€n,42=¢€,.3=—1. For larger n, e, is defined +1 or
—1, alternatively till [n*] becomes 8. If [n§]=38, e, 1=—1, then
€ny=Cpy1+1="-=¢€y,.4=+1, and otherwise e,,+1=€n12=""*=€pus=+1.
For larger m, e, is defined +1 or —1 alternatively till [#%] becomes 4.
Thus proceeding we can define (e,) such that p,—q¢.=0 (n*) and p,.—q..
oscilates between n* and —n*

If we put a,=e,|a,|, then s,=a,+a,+ -+ +a, oscilates boundedly.
For [n%] terms are of the same sign in the neighbourhood of n such

that n* becomes integer and their sign is (—1)"! and otherwise
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alternative. Thus s,— 31 (—1)""Y2v—1)a,. is alternative series. Now

v %sn

(2v—1)a,a=(2v—1)/v=2—1/v. Hence s, oscillates boundedly.
On the other hand

A=2Ap1=1/| | =1/ G-y |=n*—(n—1)*=an*" 40 (1).

If we replace s, by s,=s,— > (—1)*"Y2v—1)a,. in

vie<n
8n— (pn_ qn)l Ay I = ((12 - 12)31"" (23— 12)32' -+ (Zn'— Zn—-l)s‘n~l) /An [

then the resulting sequence converges. If s, by s,=31(—1)*"%2v—1)a,,
ve<n,

then the resulting sequence also converges. Thus s,—(p,—¢.)| a.| con-

verges.

If1>a= ; it is enough to take a subsequence of (n,) with

sufficiently large gap and follow above method concerning such sub-
sequence.

This example shows that Theorem 1 and 2 are best possible in a
sense. For, if sign of a, are given arbitrarily, then the magnitude of
a, can not be of order < 1/n*(x<<1). Condition of Theorem 1 becomes
la,|=1/n if |a,|=1/n’. On the other hand if the magnitudes of a,
are given arbitrarily then p,—gq, cannot be of order < n*(a<<1).

S4. Let f(z) be an analytic function defined in the unite circle,
P1, Tay <oy T a0d Py, P, .-+, Pn be the absolute value of zeros and poles of
f(2) in |z|<R(R<<1). By the Jensen’s formula

1™ OV | o
or Lloglf(Re )| dp=log

P1° P2 " Pm FOR™,
ryTg e Tn

Without loss of generality we can suppose that f(0)=1. If we arrange
r; and p; in the increasing order of magnitude and put log (1/r)=as,
log p;=—a;, then

2n .
1 S log | f(Re*) | do=8min—(n—1) | Gpsm |
27 Jo

=3m+n—(pm+n—'Qm+n) ‘ Om+n ‘

by the notation used above. Thus the relation of

: T iv
lims, and 1}1& —2—~SO log | f(Re™) | dop

nyoo 7T

is given by our theorem.



