588 [Vol. 18,

117. Locally Bounded Linear Topological Spaces.
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(Comm. by M. FUJIWARA, M.LA,, Dec. 12, 1942))

D.H. Hyers™ has introduced the notion of absolute value into
locally bounded linear topological spaces, and proved that the absolute
value is upper semi-continuous, while J.v. Wehausen™ showed that a
linear topological space is metrizable as an F-metric if and only if it
satisfies the first countability axiom. Since every locally bounded linear
topological space satisfies the first countability axiom, it is metrizable
as an F-metric. But all F-metric spaces are not necessarily locally
bounded. Hence the problem arises: what metric spaces are equivalent
to locally bounded linear topological spaces?

In this paper we introduce a lower or upper semi-continuous ab-
solute value into locally bounded linear topological space and give a
condition that the absolute value is continuous. We define F”-normed
spaces and prove that they are equivalent to locally bounded linear
topological spaces.

$1. Definitions and lemmas.

Definition 1. A linear space L s called a linear topological space
f there exists a family 0 of sets U < L satisfying following conditions™ -
1) The intersection of all the sets el s {4}.0
2) If U, Vel there exists Well such that W< UANV.
3) If Uell there exists Vell such that V+y < U2
4) If Uel there exists Vell such that [—1,11V <UD
5) If xeL, Uell there exists real a such that xeaU.
Definition 2. A linear topological space L s called locally bounded
if U satisfies :
6) There exists a bounded set® V of 1.
Lemma 1. If we put H=[—1,1]V, then
1) [—-1,1]H=H.
2) 0<a<<p implies «H < BH.
3) H s bounded.
4) For every a,f =0, a+f=1 there exists a constant k=1
independent of a, B such that «H-+pH < kH.
5) Let W*={aH}, a>0. Then U* is equivalent to 1.

1) {63} is the set consisting of zero element 6 only.

2) If S, T<L, S+T is the set of all x+y, where z¢S, yeT.

3) [—1,1]V is the set of all ax such as —1<a <1, xe V.

4) A set S in a linear topological space will be called bounded if for any Uell
there is a number « such as S<aU. (v. Neumann) This is the same to say that for
and sequence {w,} <S and any real sequence {a»)} converging to 0, the sequence
{anxn} converges to 6. (Banach and Kolmogoroff)
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Proof. 1), 2) and 38) are clear. We begin by proving-3). Given
Uell, there exists Well such that [—1,1]W < U. Since V is
bounded, there exists a real « satisfying V< aW. Hence H=[1,1]V
Cal—1,1]W < aU. To prove 4), suppose that such %k does not exist.
Then there exists a sequence {a,&,+ Y.} such that a,, 8, =0, a,+p.=1,
L Yn € H and a0, + Bty €nH (n=1,2, ...). Therefore (a/n)t,+ (Ba/1)Yn
€H (n=1,2,...) and a,/n, B./n —0. From boundedness of H and the
continuity of addition we have (a,/n)®%,+(Bn/n)Y.—> 6. This is a con-
tradiction. Now if k<<1, H< kH < k?*H < ---. By the boundedness
of H it follows H = {§}=V. This contradicts Definition 1. 5).

In the following line we assume k as a fixed number satisfying 4).

Lemma 2. If we put G=[—1,11V®, then G is an open® set
satisfying 1)-5) in Lemma 1.

Proof. 1)-b) is proved analogously as Lemma 1.

We will first show that aVi(a3c0) is open. Since V; is open, for
every xe V; there exists Uell such that x+U < V;. So that ax+aU

< aV; There is a Well such as 1 W< U. Hence ax+ W Cax+
[/4
aU < aV; Thus «V; is open. Now
G=V a ;=é[\élavi}u{0}=\é{lWi.
a%0 *0

lal <1 Izl
Therefore G is open.

Lemma 3. If we put F=[—1,1]V,®, then F is closed” satisfying
1)-5) in Lemma 1.

Proof. From the definition of ¥, 1) and 2) are obvious. In order
to prove 3), 4) and 5) it suffices to show that V, is bounded. For a
given Uel, there exists W such that W+ W < U. By the bounded-
ness of V there exists a real a such as V< aW, and then V< V+
VZa(W+W)Zal.

It remains to prove F is closed. Let ye F,. Since L satisfies the
first countability axiom, there exists a sequence {a,x,} < F such that
Yn=auln —>Y, an€[—1,1], x,€ V4. Let a be a limiting point of {«.},
then there exists a subsequence {ank} such that ank——)ae[—l, 1] If
a=0, y=0¢F, because F' is bounded. If «=¢0 then lima,, =lim (1/a, )y,
=(1/a)y. Let limx, =w, then xe V,, thus y=areF. This completes
the proof.

§2. Absolute value.

Definition 8. A linear space L will be said to be an absolute
valued space, if corresponding to each xe L there is a real number
|| (it 1s called absolute value of x) with the properties:

5) In the linear topological space L, S < L is called open if S=S;. S; is the set
of all « for which there exists a Uell with 2+ U < S.

6) V., the closure of V, is defined by Vei=C((CV);). (C denotes complementation).

7) F is defined as closed if F'=Fy
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1) |2|=0; |x|=0 implies x=04.

2) |ax|=|al|lx| for every real number a.

3) |z+y|Zklx|+k|y| where k=1, and independent to x, y.

Theorem 1. In every locally bounded linear topological space L it
can be introduced an absolute value which is equivalent to the original
topology.

Conversely, in every absolute valued space L, if we define the
fundamental system by

W={aS}, >0 where S'=(x:|x]|<1)
or
0 ={aS"}, a>0 where S"=(x:|z|<1),

L becomes a locally bounded linear topological space.
Proof. Let |x|=g. 1.113. lal. 1), 2) and equivalency of Ul and the

absolute value have been proved by D. H. HyersV.
We will show 8). Let |2|=a, |y|=p8. Forevery ¢e>0 ze(ate)H,
ye(B+e)H. From Lemma 1. 4) it is easily seen that

z+ye(ate)H+(B+e)H < k(a+p+2¢)H ,
i.e.
a4y | S ket =k|w|+k|y].

The converse is clear.

Corollary. If k=1, the absolute value is norm, i.e. |z | satisfies
triangular tnequality.

Remarks. In this case H is convex.

W is equivalent to U”. And let

ol =gLblal, lol"=gLbI8l.
Then |a| =|x|".
Example 1. Let IV?(p = 1) be the set of sequence of real numbers
r={x,} such that glwn |¥» << o, We define |w|=(§}llxn [¥?y», Then
IV is an absolute valued space with k=271, Since

|2y |= (S [t va V2 < G5 L [ 435 | a[7)"
<27 10+ G L 1) =220 + | ]

Example 2. Let LY?(p = 1) denote the set of measurable functions
#(t) defined on E=(0,1) and such that SLI x(t) [V7dt << oo, If the ab-

solute value of « is defined by |x[=(sE| w(t) Il’”dt)f then LY is an
absolute valved space with k=271
Theorem 2. Let |x|=g. 1.(’?. |al|, then |2| is an upper semi-con-

tinuous absolute valve, i.e. |x| satisfies 1), 2), 8) of Definition 3 and
4) for every xeL and >0 there exists >0 such that
ly|=]z|<e for |y—z| <o
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Conversely for every linear space with an upper semi-continuous
absolute value we can take as the fundamental system a family of all
open sets.

Proof. The first half has been proved by D.H. Hyers.™”

To prove the converse it is sufficient to show that S'=(x:|2|<<1)
is an open set with respect to W-topology. Let xeS’, then |xz|<<1.
Take ¢ << 0 such that |2]|+e<<1. Since the absolute value is upper
semi-continuous at x, there exists 6> 0 satisfying |y|—|z|<<e for
ly—x|<<6. We have |y|<<|x|+e<<l for yex+dS. Thus S is open.

Theorem 3. Let |x|=g. I;Fb. |al|, then |x| is a lower semi-con-

tinuous absolute value, i.e. | x| satisfies 1), 2), 8) of Definition 8 and

5) For every xeL and ¢>0 there exists 6>0 such that

lo|—ly| <e fer |[z—y|<é.

Conversely, for every linear space with a lower semi-continuous
absolute value we can take as the fundamental system a family of all
closed sets.

Proof. 1), 2), 3) is clear. We will show 5). Since F' is closed,
aF'(a>>0) is closed. Since |x| is coutinuous at 6, it is sufficient to
prove that |z | is lower semi-continuous at x 3 0. Take >0 satisfying
|2|—e>0. It follows x€(|x|—e)F. Then there exists 6 >0 such that
ye(lx|—e)F for |y—x|<<s, or |y|>|x|—e for |y—a|<<s. Thus
lz|—|y|<<e for |y—a|<<o.

To prove the converse it is sufficient to show that S”"=(z: |[x|<1)
is closed with respect to U”-topology. %€S”, then |z|>1. If we
take e such as |2|—e=1, ¢>0, then by the lower semi-continuity of
| 2], there exists 6 >0 such that |z |—|y|<<e for |x—y|<<d. That is
ye(lx|—e)S”"=S" for yex+0S’. Thus for x€S” there exists a
neighbourhood of x which does not intersect S”. This shows that S’
is closed.

We notice that for a given locally bounded linear topological space
the absolute values introduced in Theorem 1, 2, 3 are not equivalent
each other in general.

Erample 3. Let L be the linear space of complex numbers
r=a+pfi (a, B real) with absolute value

(F4+p)"2 for B0,
@] {l]al for B=0.
2
Then L is a linear space with upper semi-continuous absolute value

and k=v'8. W and 1" are equivalent to usual topology.™

Example 4. Let L be the above linear space which has the
following absolute value

lw|={ o+ for B0,
2|la for B=0.

In this case L is a linear space which has lower semi-continuous
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absolute value with k=12, and W, 10 are also equivalent to usual
topology.

Above examples show that there exist locally bounded linear topo-
logical spaces for which the absolute values are not continuous. When
[2]| is continuous? Answer is given by the following theorem.

Theorem 4. The absolute vulue of a given absolute valued space
L s continuous if and only if S'=(@:|x|<<1) s open, and S’'=
(: ]| <1) 43 closed.

Proof. Suppose that |z | is continuous. By Theorem 2, S’ is open
with respect to U'-topology. By Theorem 8, S’ is closed with respect
to U”-topology. Since W’ is equivalent to U’, and S’ is open, S” is
closed with respect to both topologies. Conversely, by the assumption
aS’(a>0) is open and aS”(a>0) is closed. From Theorem 1, Remark
and Theoreme 2, 8, |x| is continuous.

In Exampes 2, 3, S’ are open and S” are closed. Therefore both
absolute values are continuous. In Example 8, S’ is open, but S” is
not closed. In Example 4, S” is closed, but S’ is not open. It follows
that these absolute values are not continuous.

§8. F'-norm.

It is convenient to introduce the following definition.

Definition 4. A linear space L will be called an F'-normed space
if for any xe L there corresponds a real number | x|, called F'-norm,
with following properties:

1) lzl=0: lzl=0 tmplies x=80. N

2) For any real a and xzeL, there is a real |a| such that

lazl=|a|lzl. In fact |a|=C" then |a|=2", where C is a
Jiwed constant independ of a and .

3) letylZlel+lyl

Remark. If we define (x,y)=|x—y| for an F’-normed space we
have an F-metric space. So that F”-norm is a special case of F”-metric.

Theorem 5. An F'-norm which is equivalent to the original topology
can be introduced into every locally bounded linear topological spece,
and conversely every F’'-normed space is a locally bounded linear
topological space.

The proof of the Theorem will be devided into four steps.

(1) For F in Lemma 3, there exists a ¥’ = 8 such that F+F+F

<K'F. Take ¥'=C in Definition 4, 2) and let |s|'=g.Lb.[al. Then
|2|" has following properties:
1) |z{=0; |«|'=0 implies xz=6.
2) law'=[u|{z| where C=F.
3) |z, [yl, |2l <6 imply |x+y+z| <206
4) |x| is equivalent to the original topology.
If we notice that |x|'=|%| for |xl=ga;eléﬁlp. ||, then 1), 2) 4) are

obvious. It remains to prove 3). Let 6=2". |z|,|y/,|z|, <4 implies
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%,9,2€k’’F, and then x+y+zek'"(F+F+F) < E™'F. Thus |z+y+z]|
< 2r+1=95,

(2) Let us put lell——g l b lex,—-wz-ll where {xy, @z, .-+, Lp-1}

< L and n are arbitrary. Then Ilwll satisfies 1), 2), 8) of Definition 4
with C=F.

1) is clear. We will show 2). For a given ¢>0, take 6 >0 such
that 6|a|<<e. From the definition of [, there exists a sequence

{xe=0, %3, %, --., x,=2} satisfying ﬂxll+8>§'.;|xi—xi_1 I’. Thus follows

(2| lz]+e> ] nxn+|'5|a>§l | awt;— a;-g " = .

That is |«|ll>lex]. In order to prove the converse inequality, if
we notice that «=0 if and only if |«|=0, then we can assume that
a3 0. For given ¢ > 0, there exists a sequence {¥o=0, y1, ¥s, -+, Yn =02}

with laz |+ >33 [yi—veal. Tt follows

2|yz Yia | —lalgl—%-—nyz- > a2l

Thus we have Jlax]|> |a ||z
We will now prove the triangular inequality of |x|. For a given
e¢>0 there exist {xy, %y, .-+, 2} and {¥o, ¥1, ***, ¥} such that

lol+S > w—wia s Iyl+S >3 gi—via |
2 =1 2 4

Z {

x+y; for t>n,
then

n+m
lell+llyl|+€>§1|zi_zi—l 'Zlz+yl.

Thus we obtain |e+y | < |z]+]yl.
(8) lxl is equivalent to |x|.
For, following Birkhoff’s argument™ we can prove the inquality

-}z|xu'=<__nwu.g|wr.

(4) Every F’-normed space is a locally bounded linear topological
space, i.e. if we take W={S,} where S.,=(: |z]| <<« «>0) the
fundamental system, then U satisfies 1)-6) in Definition 1 and 2.

The proof is easy.

From Theorems 1 and 5 we obtain the following.

Theorem 6. Locally bounded linear topological space, absolute

valued spaces and F'-normed spaces are topologically equivalent to each
other.
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§4. Complex linear topological spaces.

In the above theory we can replace the real operator domain by
complex number field. That is, complex linear topological space is
defined by Definition 1 as space with complex number field as operator
domain, with modification of 4) such as

4") Given Uell there exists Vell such as IV U, where I=(a:
la| <1, a complex number).

Let H=1IV, G=1V; and F=IV,. Then without any formal change
we can use Definition 8 and 4. Lemmas, theorems and corrolaries are
all valid in this case.
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