462 [Vol. 19,

93. On Analytic Functions in Abstract Spaces.

By Isae SHIMODA.
Mathematical Institute, Osaka Imperial University.
(Comm. by T. TAKAGI, M.LA., Oct. 12, 1943.)

§1. The purpose of the present paper is to extend some of the
theorems of H. Cartan® on functions of several complex variables to
the case of functions whose domain and range both lie in complex
Banach spaces.®

Let E and E' be two complex Banach spaces, and let &’ =f(x) be
an E'-valued function defined on a certain neighborhood V() of a
point xye E. «'=f(x) is said to admit a variation or a Gateaux dif-
Jerential at x=x, if

§))] lim f@otay) = f (o)

a>0

exists strongly for any yeE (a is a compléx number).

An E’-valued function 2’= f(x) defined on a domain D of E is
analytic in D if it is strongly continuous on D and if it admits a
Gateaux differential at every point of D. It is clear that, in case
both E and E’ are the field of complex numbers, this definition coin-
cides with the usual definition of a complex-valued analytic function
of a single complex variable. Further, if E is the field of complex
numbers while E’ is an arbitrary complex Banach space, then our
definition coincides with that of a Banach-space-valued analytic fune-
tion of a single complex variable given by E. Hille and N. Dunford.?

An E’-valued function z'=p(x) defined on E is a polynomial of
degree n if the following conditions are satisfied: 1) p(x) is strongly
continuous at each point of E, 2) for each # and y in E, and for
any complex number a, p(x+ay) can be expressed as

@) P(x+ ay) =D Dilz, ¥),

where pi(x, y) are arbitrary E’-valued functions of two variables x and
¥ 3) pax,y)=+=0 for some x and y. If, in addition to these, p(ax)=
a*p(x), then the function p(x) is called a homogeneous polynomial of
degree n. It is clear that an E’-valued polynomial defined on E is
analytic on E.

We shall state a theorem of A.E. Taylor® which we shall need in
the following discussions :

Let E and E’ be two complex Banach spaces. If an E’-valued

*) 1 am deeply grateful to Professor Kakutani who has kindly given me a num-
ber of valuable suggestions.
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Sunetion ' =f(x) i3 defined and 1s analytic in the sphere S,=
{z|lzl <p} of E, then it may be expanded into the series

3 F@)=F(0)+2] 221 ful®),

where fAx) 18 an E'-valued homogeneous polynomial of degres m given
by
= 1 (flax)
@ flo)y=— - )= da.

the integral being taken in the positive sense on the circle |a|=p <1.
The series on the right hand side of (3) converges absolutely and uni-
Sformly in the sphere S, ={z ||zl < ¢’}, where ¢ is a sufficiently small
positive number.

§2. Theorem 1. Let E, E' and E’ be three complex Banach
spaces and let D and D’ be two domains in E and E' respectively.
If &' =f(x) 13 an E'-valued analytic function defined on D whose value
lies in D', and if x’=g() is an E"-valued analytic function defined
on IV, then &’ =g( f (z)) is an E”-valued analytic function defined on D.

Proof. 1t is clear that «/'= g( f(a;)) is strongly continuous on D.
So it suffices to show that

i IS Gt ) —9(£(z)

a->0 a

exists for any xeD and for any yeE. Without loss of generality
we may assume that x,=0, f(0)=0" and g(0’)=0", where 0, 0’ and 0"
denote the origin of E, E’ and E” respectively. Thus we have only
to show that

(6) lim

a>0

exists for any yeE, which we shall assume given and fixed.
Since 2'=f(x) is analytic at =0, so there exist two positive
constants & and M such that

() flay)=afi(y)+a'R(y, a)

with | R(y, )| < M for any a with |a| < 5. Further, since z’/=g(x’)
is analytic at 2/=0’, so there exist two positive constants &(<6) and
M such that

(8) 9(az) =agy(z) +a*S(z, a)

with [ S(z, «) | £ M for any z and « with |z <A @) +6M and |a| < &
Consequently, |a| < & implies

) o( f(a))=9(afiw)+ Ry, o))
=agi( fiw)+aR(y, a))+a2S( fi(w)+ 2Ry, a), a)

Since g¢(z) is strongly continuous, it follows from (9) that the limi
(6) exists and is equal to gl(fl(y)) for any yekFE.
Exactly in the same way, we may prove the following

(®)

o(f(aw))
[24
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Theorem 2. In addition to the assumptions in Theorem 1, let us
assume that 0eD, 0'eD, f(0)=0" and g(0)=0", where 0, O’ and 0"
denote the origin of E, E' and E” respectively. Let further

(10) S @)= pomfu(2),
(11) (@) =337-p gu(®)

be the Taylor expansions of ¥’ =f(x) and ¢’ =g(z') at x=0 and 2'=0
respectively which begin with the m-th term and the p-th term respec-
tively. Then o' =Mz)=g(f(x)) is an analytic function defined on D,
and the Taylor expansion

(12) W) =25 mp ()

of o' =h(z) begins with the mp-th term hmy(w)=gy( fulx)).

§3. Theorem 8. Let E be a compler Banach space, and let
o' =f(x) be an E-valued analytic function defined on the unit sphere
S={z|lzl <1} of E which maps S into itsélf. If the Taylor expan-
sion of flx) at x=0 13 of the form:

(13) Sf@)=2+3 7o ful®),

then o' = f(x) must be the identity mapping : f(x)=zx.

Proof. It suffices to show that f(x)=0 for n=2, 3, ... . Assume
the contrary, and let f,.(x) (m =2) be the first term which does not
vanish identically. i.e. fu(x)=0 for n=2,...,m-1, and f.(x) =0 for
some %€ S.

Let us define a sequence {f®(x)|k=1,2,...} of E-valded functions
F®(x) recurrently by

1) PE=f(f*"E), k=23 ..; [O%L)=f@).

Then, from Theorem 1 follows that each f*)(x) gives an analytic
mapping of S into itself. Further, it is not difficult to see, by ap-
pealing to Theorem 2, that the Taylor expansion of «’'=f®(x) at =0
is of the form:

(15) FE@)=2+kfm(®)+ 2 n-mirf L)

In fact, (15) is clear for k=1, and the case for general k¥ may be
proved by mathematical induction.
The integration formula (4) then gives

(16) k)= [T 4,

the integral being taken in the positive sense on the circle |a|=p<1.
From (16) follows immediately

an Elfulot < 2 [FUEm gy < L
mdop p

m+1

for k=1,2,..., in contradiction to our assumption that f,(x)=F0.
This completes the proof of Theorem 3.
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§4. Let D and I’ be two domains in two complex Banach spaces
E and E' respectively. If a/=f(x) is a one-to-one mapping of D onto
D’ such that both «'=f(x) and its inverse x=f"'z’) are analytic
functions in D and I respectively, then «’= f(x) is called an analy-
tical mapping of D onto D'.

Theorem 4. Let E and E’ be two complex Banach spaces, and
let o =f(x) be an analytic mapping of the unit sphere S={x|lx| <1}
of E onto the unit sphere S'={x'||2'| <1} of E'. If the origin 0
of E i3 mapped to the origin O of E' by o =f(x), then ¥'=f(x) is a
linear and isometric mapping.

Proof. For any 6(0 < & < 2r), let us consider an analytic mapping
o' =hy(x) of S onto itself given by

(18) holw)=ef S ().
It is clear that
19) hs(0)=0, h(x)=z.

Further, let us consider the Taylor expansions of f(x), g(x)=fYz)
and hy(x) at 2=0:

(20) f@) =271 ), .
(21) 9(@)=217-19.(),
(22) ho(@) =1 7-1ho, ().
Then Theorem 2 implies
(23) ho(2)=e"g:(e* (@) = gi( /i) .
Hence kg, i(x) is independent of 4, and so by (19),
(24) hoi(R)=z.

Thus Theorem 3 is applicable, and we see that hy(®)=z, or equivalent-
ly that f(e¥z)=e“f(x) for any 6(0 < 0 <2r) and for any zeS. From
this follows immediately by (4) that f.(x)=0 for n = 2. Thus we see
f(@)=fi(x), and this shows that f(x) is linear.” Further, since every
yeS is mapped by #'=f(x) to an element f(y)eS’, so we see that
If@l=|(Iz1+¢) f(z/(Izl+e))| <lzl+e for any >0, from which
follows that | f(x)| <llz|. Since the inverse inequality Izl=f(f()) |
<Ilf(x)| may be obtained in a similar way, so we finally see that
If(@)I=llzl. This completes the proof of Theorem 4.

1) It is easy to see that a homogeneous polynomial of degree 1 is linear. It
only suffices to show that a homogeneous polynomial p(x) of degree 1 satisfies p(x+y)=
P(z)+p(y). In fact, by definition, p(x) satisfies a relation p(z+ay)=p(x, ¥)+ap:i(,¥),

for any x, ¥ and a. It is easy to see that p(x, ¥)=p(z), and so p(z, y)=%p(z+ay)-—
%—p(x):p(%x+ y) —-p (%w) If we now let a—> oo, then the continuity of p(x) implies
that py(z, ¥)=p(y).



