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1. The purpose of the present paper is to extend some of the
theorems of H. Cartan) on functions of several complex variables to
the case of functions whose domain and range both lie in complex
Banach spaces.*)

Let E and E be wo complex Banach spaces, and let -f() be
an E-valued function defined on a certain neighborhood V(o)of a
point 0E. =f() is said to admit a ariation or a Gteaux dif-
ferential at x=xo if

(1) lim f.(_Xo -t-. ay) f()
a-),O

exists strongly for any y eE (a is a complex number).
An E’-valued function x’=f(z) defined on a domain D of E is

analytic in D if it is strongly continuous on D and if it admits a
Gateaux differential at every point of D. It is clear that, in case
both E and E’ are the field of complex numbers, this definition coin-
cides with the usual definition of a complex-valued analytic function
of a single complex variable. Further, if E is the field of complex
numbers while E’ is an arbitrary complex Banach space, then our
definition coincides with that of a Banach-space-valued analytic func-
tion of a single complex variable given by E. Hille and N. Dunford.2

An E’-valued function z’=p(x) defined on E is a polynomial of
degree n if the following conditions are satisfied: 1) p() is strongly
continuous at each point of E, 2) for each z and y in E, and for
any complex number a, p(x+ay) can be expressed as

(2) p(z+y)=,.,,,p(x, y),

where p(x, y) are arbitrary E’-valued functions of two variables x and
y, 3) pn(z, y) 0 for some x and y. If, in addition to these,
ap(z), then the function p(z)is called a homog polynomial of
degree n. It is clear that an E’-valued polynomial defined on E is
analytic on E.

We shall state a theorem of A.E. Taylor which we shall need in
the following discussions:

Let E and E’ be two cample Banach spaces. If an E’-valued

*) I am deeply grateful to Professor Kakutani who bs kindly given me a num-
ber of valuable suggestions.

1) H. Cm’tan, Sur les groupes des transformations analytiques, ActualitY, Paris,
193a

2) Cf. E. Hille, Semi-group of linear transformations, Annals of Math., .40 (1939).
3} A.E. Taylor, On the properties of analytic functions in abstract spaces, Math.

Annalen, 115 (1938).
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funvtion ’ffif(z) is defined anti s analyti in th sphere
{! !! < p} of E, th t na b ead into tl

(3) f(,)=f(O)+--.f,(,)
where f,() is an E’-vaIued hgoly of
by

(4) f(z)=j.
t integr bring k in t tive s rc al=p’< 1.
The ss the right ha de of (8) cvg duy a uni-
fory $e S, {xlll f}, where is a sufficiently small
sifive humor.

2. Th 1. Let E, a E" thr Bah
spac a t D and D" be two dai in E and rivdy.
If ’=f() an -vd ayt@fut fid D whe val
li in D’, a if ’=g(’) an E"-vd ayt@fut

D’, t"=g(f(x)) an E"-vd andfut on D.
Proof. It is clear that ’=g(f(x)) is strongly continuo on D.

So it suc to show that

+.))

exis for any eD and for any y eE. Without. of nerality
we may assume that =0, f(0)=0’ and 0’)=0", where 0, 0’ and 0"
deno the on of E, and E" resvdy. Thus we have only

show that

(6) lim (f())

exis for any y eE, which we shall ume ven and fix.
Since z’=f() is analytic at =0, them exist two sifive

constants and M such that

(7) /(y) f,(y.)+R(,)
with R(y, )il M for any a with a & her, since ’=
is analygc at =0’, there exist two sitive ns cf} and
M’ such that

(8) )=ag)+S(z, }

with (z, ) M’ for any z and a with z lifa(} +M and a

Conuently, a ’ implies

9 () (+,)

Since g(z) is strongly continuous, it follows from (9)that the limi
(6} exis and is equal W g(f(y)) for any yeE.

Exactly in the same way, we may prove, the following
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ssume tha 0 e D, O’ D’, f(O) O’ nd g(O’) 0", wh O, O’ 0"
U n of E, a ’ zivdy. fu

rtivdy whh n th e m- a t r-
tivdy. T =x) g(f(x)) anafut D,
a t Tay

(12)

#

8={ II! m < 1) # E whh S inW i. If t Tav n-
of fl) at =0 of f:

(13)

Prof. It sc show that f.(x)0 for n=2, 3, e
the conary, d let f.(x) (m 2) the flint m which d not
vish identilly, i. e, f.(x)0 for n= 2, ..., m-l, d f.() 0 for
me e S.
t define a quence {fl)(x)k1,2, ...} of E-valff funcons

f)(x) ruently by

Then, from Threm 1 follows that each f((x) v an alytic
mapping of S in ilf. her, it is not fficult , by ap-
ling Threm 2, that the Taylor expansioa of
is of the fore:

(15) f)(x)=x+kf.(x)+

In ft, (15)is cl for k=l, and the c for general k may
prov by maematical inducon.

The ination fomula (4) then v

2J a"+

the inl ing ken in the sitive n on the drele [a l=p< 1.
om (16) follows immia]y

1 Ilf(>()I!
_

1

for k=1,2, ..., in contraetion our sumption tt f,() 0.
This comple the prf of Threm 3.
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4. Let D and D’ be two domains in two complex Banach spaces
E and E’ respectively. If x’--f(x) is a one-to-one mapping of D onto
D such that both =f(x) and its inverse z--f-l(x’) are analytic
functions in D and D respectively, then ’--f() is called an analy-
tal mapping of D onto

Theorem . Let E and E’ be two comple Banach spaces, and
/et z=f() be an analytic mapping of the unit sphere S=
of E onto the unit sphere S’ {’lll’ < 1 } of .E. If the origin 0
of E is apped W he origin O’ of E’ by =f(), hen =f() is a
linear and isomeSric mapping.

Proof. For any 8(0 8 2), let us consider an analytic mapping
=h(x) of S onto itself given by

(18) h()=e-’f-’(ef(x))
It is clear that

(19) h(0)=0, ho(x)--x.

Further, let us consider the Taylor expansions of f(), g()--f-()
and h(x) at =0"

(20) f()=_f(),

(22) () ,,ho..().

Then Theorem 2 implies

Hence he.,() is independent of 0, and so by

(24) h.,()=.

Thus Theorem 3 is applicable, and we see that he()x, or equiva]ent-
ly that f(e,)=--ef() or any 0(0 _--<_ 0 < 2) and or any m 8. From
this ollows immediately by (4) that f.(m)=-0 or n> 2. Thus we see
f()=j(), and this shows that f() is linear.D Further, since every
y S is mapped by =f() to an element f(y) e S’, so we see that

ilf( )l]=ll(ll ]l+e) for any e>0, from which
follows that f()I[ =< ][. Since the inverse inequality

=<llf(z)l[ may be obtained in a similar way, so we finally see that
Ilf()]l--l[l[. This completes the proof of Theorem 4.

1) It is easy to see that a homogeneous polynomial of degree 1 is linear. It
only suffices to show that a homogeneous polynomial p(z)of degree 1 satisfies p(z+y)=
p(z)+p(y). In fact, by definition, p(z) satisfies a relation p(z+gy)=po(z,y)+apz(z,y),

1
for any z, y and a. It is easy to see that P0(X, Y)=PZ), and so pz(z, y)=-p(z+ay)--
1 1
yp(,)--p[-,+y)-ptx). If we now let a-> o% then the continuity of p(-) implies

that r,(, y)=p(y).


