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133. On the Phenomena o Instability in Undamped
Quasi-harmonic Vibration. Part L

By Katsutada SEZAWA and Ikuo UTIDA.
Aeronautical Research Institute, Tokyo Imperial University.

(Comm, by K. SF_w, ._., Dec. 13, 1943.)

The quasi-harmonic vibration, namely, the vibration of a system
with periodically varying elasticity or damping coefficient or inertia
mass, is present in such widely different kinds of engineering problems
as, for example, a two-pole turbo-generator, a condenser microphone,
an electric locomotive of the side-rod type, a two-blade propeller,
an internal combustion engine with cranks and pistons, etc. It is
possible to show that the equation of undamped quasi-harmonic vibra-
tion of any case is generally involved in the expression of the type:

where P(t), Q(t) are periodic functions of time. For meeting every
practical need, it is advisable to decompose equation (1)to three simple
cases, namely

P() const., Q()= Q0+Q cos 2pt, (1 a)

P(0 const., Q($)=I/R(t)=I](Ro+R cos 2p0, (1 b)

Q(t)=const., P(t)=Po+P cos 2pt (1 c)

where 2p is the frequency of periodic variation of such coefficient as
elasticity or damping or inertia mass.

Case (1 a), having already called attention of many investigators,
is well known to be solved with Mathieu’s functions, whereas cases (1 b),
(1 c)are not treated as simple as in case (! a). If however R,Px
were small quantities, their solutions would be represented in the forms
of expansion in series or in other approxima ones. Since with such
restriction as R, P being small, the problem is liable to be outside
the theoretical interest and also to be remote from practical use, it is
now of pressing importance to obtain more satisfactory solutions that
should be adapted to any value of R or P.

Upon examining the nature of the equations, it has been found
that transformation of certain variables aids us to formulate such
solutions as will answer, at least, to some cases of ripple in periodically
varying coefficient, as a result of which it is possible for the restric-
tion of R, P just mentioned to be precluded.

The expression (1 b) can also be written

x=0, (2)
d 1--k sin2 v

where
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Writing x (3)

and transfoming r x in (2), we get

d2X
_
k sn x cn x dX +,o,X= 0. (2.1)

dx dn x dx

If we apply Landen’s transformation
,

sn[(l+k’, 1-k’ J_ (1Tk’)sn(x,k)cn(x,k) (4)
1 + k’ dn (x, k)

in which k’ /1 k (2.1) ruces to

d+k sn (y, k)-+mX=0 (2.2)
d

where y (1 OOk
1

Since the coefficient of the sond rm in equation (2.2) is a riodic
function, the solution of that equation should a riic function
ofthe sond kind (sort) as having the relation

X(yT 4K1) 2X(y) (5)

where ] represents the coefficient of stability and K, is such a quarter
period of sn (?l, kl) as sn(K,, k)=l, that is to say

It will be seen that equation (2.2) is simplified greatly compared with
the original one.

The expression (1 c) can be written

dX}cos 2pt)-d-t- +QX= 0

that is dX 2P1 sin 2pt dX + Q X=O
dt Po+P cos 2pt dt Po+P cos 2pt

With simplification this reduces to

d-X 2k __sn _.q0s__
dt 1 k sin

dX + ,o, X= 0, (6)

1) For example, H. Hancock, Theory of Elliptic Functions (1910), 251.
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where pt r,
Q L.Q o 2P_____ k

Po+Px Po P, Po+P,

Transforming r to z by means of (3), we get

d2X k2 sn cn x -d-X-- +,X=O (6.1}
d dn dx

Applying again Landen’s transformation in (4), we have

dXdy2 kl sn (y, kl)-- +okX=0 (6.2)

where y (1 +k’)x kl- 1 k’ o

It will be seen that equation (6.2) is of the same form as that (2.2)
with such distinction as the signs of k; in both cases being opposite.
If however we write

y y-t-2K
equation (6.2) becomes

dX (6.3)

which is of the same form as (2.2).
both cases (1 b), (1 c), the equation

It follows that for discussing

(2.2’)

should always be solved. As a matter of fact, with transformation
of variable t in our problem the condition of critical stability as
resulting from the nature of X is obviously unchanged, from which
condition the difficulty in mathematical analysis is fairly diminished.
In the present case, particularly, the advantage arising from such type
as equation (2.2’) is that the coefficient sn (y, k) of the second term
can be replaced by a function corresponding to rectangular ripple.
sn (y, kl) is a curve of such character as intermediate between sn (y, 0)
--sin y and sn (y, 1)=tanh y. Since, for example, even in the case of
treatment of Mathieu’s equation the coefficient sin y can be replaced
by rectangular ripple with a rather satisfactory result to stability
condition, it would be possible to conclude straightway that the ap-
proximation in the present case is more in line with the answer of
the problem than in the case of Mathieu’s equation1.

For the reason above given, we shall now write

sn (y, k) -, H(y, kl) (7)

1) Van der Pol, Phil. Mag., [7] 5 (1928), 18; Van den Hartog, Mechanical Vibra-
tion (1940), 388.
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where

H(y, k)= l [4nK y (4n+2)K]
H(y, k)= 1, [(4n/2)K < y < (4n+4)K]

and H(y+4K, k) H(y, k).

It then follows that

dX-t- kH(y, k) dX +o,,X= 0 (8)
dy dy

the solution of which assumes the forms

x={X=e-’"(Acos,oy+Bsin,oy), [4nK<iy<(4n+2)K] }(9)X=e’ (Ccosa,y+Dsinoy), [(4n-t-2)K < y < (4n+4)K]

in which n O, 1, 2,..., k. k[2, o}=,-k, and A, B, C, D are arbitrary
constants. The above solutions both in the forms of displacement as
well as in those of velocity should satisfy the condition of continuity
for y=2K and should also be of the type of a periodic function of
the second kind as shown in (5). We have then

From (9) and (10), eliminating A, B, C, D, we get

Xz+2N2+ 1 =0, (11)

where N=2(1 +2) sin2 2K1-1, k.],

from which the coefficient of stability becomes

From (12) it will be seen that if N> 1 or N <-1, a one value of
I is greater than unity so that the motion is unstable, whereas if
1 > N> -1, both values of I are complex, with their real parts being
less than unity so that the motion is stable. It then follows that
IN[= 1 represents the condition of the critical stability. The expres-
sions showing the criticals are such that

sin 2K1=.
1

1 (N= 1) }+* (13)
sin 2eoKl=0. eo 0 (N= 1)

From N=- 1 we have

2K, n=, (n 1, 2, 3, ...) (14)

and from N=1 we get

kK1- (2n+ t)rr :t:x tan-’ . (=k,/2) (15)
2
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Substituting now (14), (15) in the following expressions

o,o,- ,0,,= (16)
p l+k, p l-k,

we get the values of wo]p, wp. Referring
to imanary, in which ca we should wH

from which it follows

1 sinh 2e.K- 1.

The crigcal condition iN]= 1 in this case is given by

k/
Sutituting the relaon twn (, and k, thus found in

... .oo ,/-(2.o.) .o. /-(2..,)
,o,- (16’)

p 1

we obtain ,,o/p and
Now, since (oo/p and w,/p are functions of either one of k, or (,

it is ssible to obtain the relation twn ,oo/p and Wl/p at the transition
sta 1, namely, the sta at which the vibration changes from
stable one to unstable, the result of calculation ing shown by ries of
curves in Fig. 1. The vibrational ste indicat by shad areas is
stable and that indicat by blank ars unstable. The critical cor-
resnding to 2=-1, namely N=I, is represent by every curve
forming the undary twn shad and blank areas, whereas the
critical corresnding to 1, namely N=-1, is indicat by every
curve quite within any shaded area, it ing reveal that there
remains no region for the unstable condition corresponding to N < -1.
Since furthermore the condition twn ,,o/p and o,/p can reverse,
the arrangement of curves in Fig. 1 is symmetrical with reset
the diagonal line passing through O; such a fire of symmetrical
form has n drawn, as a mater of fact, from n in the applica-
tion of actual problems. It should re in mind that the be
lines ,p=0 and o0/p=0 are asymptotic to the restive th curves
nrt to the same ba lines and the lines (,,,/p=1/2 and ,,,o/p=1/2
ymptic to all the remaining curves.

The vibrational condition for any ratio of ,0o/,,,1 is indica by a
line passing through the origin. If this line OA. the conditions
corresnding to sents 0 a,, ,a2, -2,:,, are stable and those cor-
responding to sments aa, (::, as well as points a2, a,, unstable.

1) For obtaining the expressions, the relations 0p--=-(l+k’),-, -m/,:--(k/2),
k-(1-k)/(l + k), and ./ 1-/,., have len availed of.
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Fig. 1.

Segments alal, aa3, represent such respective instabilities that occur
when 1-,3-, cycles, namely, odd numbers of cycles, of ripple
in periodically varying coefficient synchronize with two cycles of
"reference" natural vibration. On the other hand, the critical in-
stabilities that should belong to points as, a, occur when 2-, 4-,
cycles, namely, even numbers of cycles of ripple in periodically vary-
ing coefficient synchronize with two cycles of "reference" natural
vibration. Although, in the nature of things, there are innumerable
natural frequencies that range from 0 to 1, yet for symplifying the
problem, the reference natural vibration in the present case is specially
assumed. A simple and rather advisable form of frequency of
reference natural vibration would be (,,,o-t-o,,)]2p, the relation between
(o/)/2p and k=(w-0)/(/o) being calculated from data in
Fig. 1, the result of which is shown in Fig. 2. In this case again
each curve indicates the transition from stable to unstable conditions,
the shaded areas and the blank areas representing stable and unstable
regions, respectively. From this figure it @ill be seen that the greater
the difference between ,v and ,v0, the more pronounced the feature of
the "reference" natural frequency disagreeing with an integral multiple
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of the cycles of ripple in periodically varying coefficient. When the
difference in question is zero, namely, when kl is zero, there exists no
disagreement. Although in the case of a great difference existing,
say, kl-- 1, instability does not occur within the range of a finite ratio
of (0+w)/2p, if however the condition of instability be once attained,
it is improbable for the vibration to be away from that instability
for a very wide range of (,oo+,o)/2p. At all events, although the
above conclusion is merely mathematical, the results observed in our
experiments are likely to agree with the theoretical ones, which fact
will be available before long.

In the present mathematical analysis we have ascertained two
cases (1 b), (1 c). As shown in the beginning of this paper, case (1 a)
has already been investigated by many authors, for which reason
reference to that case is omitted. Although the general case of quasi-
harmonic vibration including (1 a), (1 b), (1 c) simultaneously is very
difficult, yet we have hopes that it would be possible for that case to
be ascertained in some tentative manner.


