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1. Preliminary notes. In the previous paperD, some cases of
quasi-harmonic vibration, namely, the cases in which there are periodi-
cally varying inertia mass as well as elasticity, have been discussed
from mathematical point. It has been concluded that instability with
a certain range occurs when 1-, 1/3, cycle, namely, odd number
fraction of a cycle of ripple in periodically varying coefficient syn-
chronizes with two cycles of reference natural vibration, whereas
instability with zero range should occur when 1/2-, 1/4-, cycle,
namely, even number fraction of a cycle of ripple in periodically varying
coefficient synchronizes with two cycles of reference natural vibration.
In the present paper, results of our experimental investigation with a
model as well as the formulation of the equations most adapted to
such experiments are mainly stated, from which it is possible for us
to ascertain that features found from theory well agree with experi-
mental phenomena.

2. Experiments with a rotating two-blade model propeller. We
shall now consider such a special case that the propeller and the engine,
as a whole, are liable to be in tilting motion under a finite, resistance
in the elastic force of the engine mounting. In the present case,
furthermore, tilting motion in a plane is only present, in consequence

of which the experiment and the analysi
___
1- are much simplified. The skeleton view

_--[= of the model is shown in Fig. 1.
A bar PP corresponding to the pro-

_
peller rotates with a shaft SS. It is

"’-----" possible for the reference ratural vibra-= tions to change by shifting the affixed-----=- " masses M, M along PP. The elastic resist-
ance corresponding to the engine mounting
arises from the springs E, E, E. The con-
dition represented in Fig. 1 indicates the

Fig. 1. state with the reference natural vibration

1) K. Sezawa and I. Utida, Proc. 19 (1943), 646-652.
2) Erratum to the previous paper. ,/1--ksin r in line 3, p. 647 should be read

as r/1-k sin
3) Some careless explanation in the previous paper is now corrected.
(a) "1-, 3-, cycles" and "odd numbers of cycles" in line 2, p. 651 should be

1-, 1/3-, cycle" and "odd number fraction of a cycle ", respectively.
(b) "2-, 4-, cycles" and "even numbers of cycles" in lines 5, 6, p. 651, should

be "1/2-, 1/4-, cycle" and "even number fraction of a cycle ", respectively.
(c) "multiple" in line 19, p. 651, is to be "fraction ".
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of the type 0. In such another position of the propeller as turned
by 90, the reference natural vibration is to be w. The shaft SS is
connected with a flexible shaft to a one-H. P. three phase Schrage
motor and rotated for such a wide range as from 125 rev./min, to
2,500 rev./min. Mass corresponding to part of the propeller is 400 gms.
and the mass including the propeller and the engine above the spring,
entirely, 3,000 gms. The values of 0, together with k’=,,o/, are
shown in Table I.

In the present experiment, different
TABLE I. cycles (2p) of ripple in periodically vary-

ing coefficient, namely, the moment of
Case ’" ’ inertia mass, are set up from the change in
a n.45 1 .15 o.sT the revolution in Schrage motor. Taking
b 10.05 1 .0 0.S3S the value.corresponding to w/p as abscissa
c 9.00 .o 0.75o and the (double) amplitude (in mm) of the
d 8.35 1] 95 0.699 propeller tip as ordinate, the experimental

results obtained are shown in Figs. 2 a, 2 b,

Fig. 2c. Case c. k=0.750.

Fig. 2d. Case d. k=0,699,
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2c, 2d. Every maximum in any curve represents the condition of
instability. It will be seen that the greater the difference between
Ol and 0, the more pronounced the feature of the reference natural
vibration disagreeing with an integral fraction of the cycle of ripple
in periodically varying coefficient. It should be borne in mind that
although the problem is related to instability, the amplitude at every
instability is not infinite owing to the effect of damping as well as
change of state at a finite amplitude.

For comparing the experimental result with theoretical one, the
values of o/p for every case of 0/ are plotted in Fig. 3, which
figure is of the same type as shown in Fig. I of the preceding paper.
Points plotted in Fig. 3 have been taken from the maximum of every
peak in the curves in Figs. 2. For a further confirmation of the
answer of the problem, the range of every instability already known

Fig. 3. Instability points in experiments are present nearly
in instability ranges known from theory.

from theory is indicated by two vertical strip lines near in every
maximum in the experimental results in Figs. 2. Upon examining
Figs. 2 as well as Fig. 3, we get the belief that the result from theory
and that of experiment fairly agree for every case of the problem
and for every order of instability.

3. Notes on the instability of the system of the engine with the
propeller in the case of the elastic mounting being radially symmetrical.
Although, for ascertaining the agreement of the experimental result
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wth theory, the tilting motion of the system of the engine and the
propeller in experiments has been constrained to be in a plane, the
actual condition is rather such that the distribution of the elastic
resistance in the mounting is radially symmetrical witch respect to the
shaft line of the engine. In such a case, if there are two blades in
the propeller, it is also likely that the inertia coefficient is peridically
varying, as a result of which the phenomena of such instability as we
have so far investigated should naturally be present. The existence
of such phenomena has first called Bentley’s attention although his
problem was not mathematical and the said instability seems to be
related merely with the case of fundamental order.

At all events, although in the case of tilting motion of the system
lying in any radial plane, the mathematical equations should be
invariably simultaneous and the solutions slightly complicated, the
important part of the problem dffering from our idealized case would
be nothing more than the gyroscopic motion of the propeller with any
number of blades and it is immaterial whether or not the instability
in quasi-harmonic vibration in a two-blade propeller specially coatri-
butes to the problem.

4. Formulation of the equation of motion of the engine with a
two-blade propeller. The formulation of the equation of motion in
obedience to the state of the model experiments shown previously is
not difficult. Carter) gave a simple method of formulating the equation
in the case of two degrees of freedom in tilting. In
our case, it is possible for the tilting to be restricted
in a vertical plane. "---.Let OX, OY, OZ in Fig. 4 be fixed rectangular
coordiaates with 0 at the centre of the propeller hub.
If the engine and propeller system tilts in vertical
plane XOZ by 0, the angular velocities of the system

Fig. 4.
about OX, OY, OZ, are O, 0, 0 respectively. We shall
.furthermore take axis OZ2 at the middle line of the blades (generally
in any radial line) and axis of OY2 normal to OZ2 and OX, OZ2, OY2
rotating with angular velocity i. It follows that the angular velocities
about OX, OY2, OZ2 are

j;=, z=gi sin , =cos , (1)

respectively. Assuming that the moments of inertia of the propeller
about OZ, OY, OX are A,B, C, respectively, the kinetic energy of
the propeller about its centre of mass is

1 (C.,.t..BT=- +A) (2)

Let D be the moment of inertia of the system of the engine and
the propeller about the centre of the tilting movement , and S the

1) G.P. Bentley, Vibration of Radial Aircraft Engines, J. Aeron. Sci., 6 (1939),
No. 7, 283.

2) B.C. Carter, Notes on the Whirling of Radial Engines on their Mountings,
Mathematical Analysis and Experimental Observations, R. & M., No. 1783 (1935).
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elastic moment of the engine mounting for a unit tilting. The total
kinetic energy T and the potential energy V (of the mounting) are
then

T= 1-- (C.’-]-Br2q-A22+D202), V-$2 0 (3)
2 2

Substituting (3), (1) in Lagrange’s equation

we get

(4)

g(A cos +B sin +D) d(A-B) sin 2+SO 0. (5)

If the frequency in radian of the propeller rotation be p, then O=pt,
so that (5) reduces to

t’(A cos pt+B sinz pt+D2)-dp(A-B) sin 2pt+SO=O, (6)

that is to say,

A-B cos 2pt } +S.O O (7)
2

This is of the same form as the equation (lc) in the previous paper).
Although we have now discussed the case of a two-blade propeller,

the solution is also adapted to cases of any number of blades. If the
number of blades were greater than three, it then invariably follows
that A =B, from which the equation of vibratory motion is simply

((A/B)/2+D2}dq-$20= O, (8)

no instability being then in existence.. Concluding remarks. In the present paper, the phenomena
of instability in quasi-harmonic vibration have been ascertained experi-
mentally with a two-blade model propeller and furthermore formulated
the equation meeting with the case of the propeller for confirming the
agreement between theory and experiment from practical standpoint.
It is likely that a number of important examples of engineering
problems as to relate to the present case is existent, the discussion of
which examples, we have hopes, will be available before long.

1) Proc. 19 (1943), 646.


