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Abstract

We show that there exists a holomorphic function, continuous to the
boundary in a bounded, balanced, strictly pseudoconvex domain Ω with C2

boundary such that almost every slice function has a series of Taylor coeffi-
cients divergent with every power p ∈ (0, 2).

1 Introduction

1.1 Historical background.

In [10, 7.2] Rudin gives some examples of boundary behavior of holomorphic
functions in the unit balls of dimensions 2 and 3. Ryll and Wojtaszczyk observed
[8, Theorem 1.2 + Remark 1.10] that similar examples can be constructed in arbi-
trary dimension. The crucial tool used in reminded constructions is [8, Theorem
1.2]: there exist polynomials {pn} homogeneous of degree n on the unit ball Bd

such that

‖pn‖2 = 1 and ‖pn‖∞ ≤ 2d

√
π

. (1.1)

This tool can be used to convert some one dimensional examples into multidi-
mensional cases. An interesting example of such an application is presented in
paper [7].

It is known that there exists a holomorphic function f (z) = ∑
∞
n=0 anzn in the

disk-algebra and such that ∑
∞
n=0 |an|p = ∞ for all p < 2. Wojtaszczyk generalized

this fact.
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1.2 Motivations.

Our inspiration is paper [7], where it was proven that there exists a function
f ∈ A(Bd) such that almost every slice function of f has a series of Taylor
coefficients divergent with every power p < 2 .

We are going to strengthen the Wojtaszczyk’s result [7] by showing that:

1. the unit ball B
d can be replaced by Ω bounded, balanced, strictly pseudo-

convex domain with C2 boundary,

2. it is possible to construct f in the elementary way.

We use a fact [2, Theorem 3.2] about commonly bounded holomorphic functions
which are big in each boundary point. Let us note that [2, Theorem 3.2] can be
used in the construction of an inner function (see [2]).

Wojtaszczyk uses (1.1) in [7, Proposition] to describe surjectivity of the opera-
tor

T : A(Bd) ∋ f → (〈 f , p2n〉)∞
n=0 ∈ l2

by duality theorem. In one variable, the constructive proof of such surjectivity
can be found in [1]. As Wojtaszczyk mentioned it would be interesting to have
such a constructive proof also in the case of the unit ball B

d. We don’t know if
similar result can be obtained for other domains than B

d. Wojtaszczyk uses also
“scrambling lemma”, which needs unitary mappings A(Bd). A lack either of the
mentioned surjectivity or “scrambling lemma” does not enable to generalize the
Wojtaszczyk’s proof.

1.3 Notations.

Let Ω be a bounded, balanced, strictly pseudoconvex domain with the boundary
of class C2. Now we denote σ as a standard circular invariant measure on ∂Ω

with σ(∂Ω) = 1.
Given f ∈ A(Ω) we study the slice function B

1 ∋ λ → f (λz) and the middle

value ‖ f‖z :=
√

∫ 1
0 | f (e2πitz)|2dt of holomorphic function f on a circle given by

the point z ∈ ∂Ω.
We need the following fact:

Theorem 1. (see [2, Theorem 3.2], [5, Lemma 2.1]). Let m ∈ N. There exists a natural
number N0 = N0(∂Ω) such that, if ε ∈ (0, 1), h is a continuous, strictly positive
function on ∂Ω, then there exist polynomials f1, ..., fN0

∈ A(Ω) such that:

1. each nonzero term in the expansion of f j (for all j) has a degree greater than m,

2.
∣

∣ f j

∣

∣ < h on ∂Ω,

3. 1
2 h < maxj=1,...,N0

∣

∣ f j

∣

∣ on ∂Ω.

The theorem above is proved in a more general situation e.g. for a domain
with Holomorphic Support Function but we consider here only a simplified ver-
sion for a strictly pseudoconvex case.
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1.4 Main result.

We obtain the following fact:

Theorem. Assume that Ω is a bounded, balanced, strictly pseudoconvex domain with
the boundary of class C2. There exists a holomorphic function f ∈ A(Ω) such that
almost every slice function has a series of Taylor coefficients divergent with every power
p ∈ (0, 2).

To obtain Taylor series of a function f it is sufficient to find a homogeneous
expansion:

f (z) =
∞

∑
n=0

pn(z)

where pn is a homogeneous polynomial of a degree n. Now we have Taylor coef-
ficients expansion for a slice function:

λ → f (λz) =
∞

∑
n=0

pn(z)λ
n,

so we construct a holomorphic function f ∈ A(Ω) with:

∞

∑
n=0

|pn(z)|s = ∞

for s ∈ (0, 2) and σ-almost all z ∈ ∂Ω. Note that if f is continuous to the boundary,
then (for all z ∈ ∂Ω):

∞

∑
n=0

|pn(z)|2 < ∞.

2 Holomorphic functions with divergent taylor series

Lemma 2. There exists a constant γ > 0 such that for κ ∈ N, ε̃ > 0, and a positive,
continuous function h on ∂Ω we can choose a polynomial p and a compact subset K of
∂Ω such that:

• each nonzero monomial in p has a degree greater than κ,

• |p| < h on ∂Ω,

• ‖p‖z ≥ γ ‖h‖z for z ∈ K,

• σ(K) > 1 − ε̃.

Proof. Let γ > 0 be such that γ = 1
2
√

N0
(1 − γ) where N0 ∈ N is the constant

from Theorem 1. We construct a sequence of polynomials pn such that we have
the following conditions fulfilled:
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1. each nonzero term in the expansion of pn has a degree greater than κ and
less than the degree of each term in the expansion of pn+1,

2. |∑n
k=1 pk| < h on ∂Ω,

3. if n > 1 then the compact set Kn :=
{

z ∈ ∂Ω : ‖∑
n
k=1 pk‖z ≥ γ ‖h‖z

}

has the
following properties:

(a) Kn ⊂ Kn+1,

(b) σ(Kn+1 \ Kn) ≥ 1
2N0

σ (∂Ω \ Kn).

Let p1 := 0. Then K1 = ∅ and the conditions (1)-(2) are fulfilled. Now suppose
that we have chosen p1, ..., pn according to (1)-(3). Due to the Theorem 1 there
exist polynomials g1, ..., gN0

such that:

• each monomial in gj has a degree greater than monomials’ degrees in
p1, ..., pn,

•
∣

∣gj

∣

∣ < h − |∑n
k=1 pk| on ∂Ω,

• 1
2 (h − |∑n

k=1 pk|) < maxj=1,...,N0

∣

∣gj

∣

∣ on ∂Ω.

If z ∈ ∂Ω then

N0

∑
j=1

∥

∥gj

∥

∥

2

z
=

N0

∑
j=1

∫ 1

0

∣

∣

∣
gj

(

e2πitz
)
∣

∣

∣

2
dt ≥

∫ 1

0
max

j=1,...,N0

∣

∣

∣
gj

(

e2πitz
)
∣

∣

∣

2
dt

≥
∫ 1

0

1

4

∣

∣

∣

∣

∣

(

h −
∣

∣

∣

∣

∣

n

∑
k=1

pk

∣

∣

∣

∣

∣

)

(

e2πitz
)

∣

∣

∣

∣

∣

2

dt =
1

4

∥

∥

∥

∥

∥

h −
∣

∣

∣

∣

∣

n

∑
k=1

pk

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

2

z

.

In particular there exists jz ∈ {1, ..., N0} such that

∥

∥gjz

∥

∥

2

z
≥ 1

4N0

∥

∥

∥

∥

∥

h −
∣

∣

∣

∣

∣

n

∑
k=1

pk

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

2

z

Now we can define

Vj :=







z ∈ ∂Ω \ Kn :
∥

∥gj

∥

∥

2

z
≥ 1

4N0

∥

∥

∥

∥

∥

h −
∣

∣

∣

∣

∣

n

∑
k=1

pk

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

2

z







.

and observe that ∂Ω \ Kn =
⋃N0

j=1 Vj . In particular there exists j ∈ {1, ..., N0}
such that σ(Vj) ≥ 1

N0
σ(∂Ω \ Kn). We can choose a compact set T ⊂ Vj such that

σ(T) ≥ 1
2N0

σ(∂Ω \ Kn).

We define pn+1 = gj and observe that pn+1 fulfills the properties (1)-(2).

Let us consider Kn+1 =
{

z ∈ ∂Ω :
∥

∥

∥∑
n+1
k=1 pk

∥

∥

∥

z
≥ γ ‖h‖z

}

. Since p1, ..., pn, pn+1

are orthogonal in an L2 space on slices i.e.
∥

∥

∥∑
n+1
k=1 pk

∥

∥

∥

2

z
= ∑

n+1
k=1 ‖pk‖2

z for all
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z ∈ ∂Ω, we can easily observe that
∥

∥

∥∑
n+1
k=1 pk

∥

∥

∥

z
≥ ‖∑

n
k=1 pk‖z for all

z ∈ ∂Ω, which implies that Kn ⊂ Kn+1.
Let z ∈ T. Since T ⊂ ∂Ω \ Kn we have ‖∑

n
k=1 pk‖z < γ ‖h‖z which implies

‖pn+1‖z =
∥

∥gj

∥

∥

z
≥
√

1

4N0

∥

∥

∥

∥

∥

h −
∣

∣

∣

∣

∣

n

∑
k=1

pk

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

z

≥ 1

2
√

N0

(

‖h‖z −
∥

∥

∥

∥

∥

n

∑
k=1

pk

∥

∥

∥

∥

∥

z

)

≥ 1

2
√

N0
(‖h‖z − γ ‖h‖z) ≥

1

2
√

N0
(1 − γ) ‖h‖z = γ ‖h‖z ,

but
∥

∥

∥∑
n+1
k=1 pk

∥

∥

∥

z
≥ ‖pn+1‖z, so T ⊂ Kn+1. In particular

σ(Kn+1 \ Kn) ≥ σ(T) ≥ 1

2N0
σ (∂Ω \ Kn) .

We have constructed a sequence polynomials {pk}k∈N which fulfills the prop-
erties (1)-(3).

Since (for all N ∈ N):

1 ≥
∞

∑
n=1

σ (Kn+1 \ Kn) ≥
∞

∑
n=1

1

2N0
σ (∂Ω \ Kn) ≥

N

∑
n=1

1

2N0
σ (∂Ω \ KN)

=
N

2N0
σ (∂Ω \ KN)

there exists N ∈ N such that σ (∂Ω \ KN) < ε̃. In particular σ (KN) > 1 − ε̃

and we can define K = KN and p = ∑
N
k=1 pk, which now fulfills all the required

properties.

Lemma 3. Let ε, a ∈ (0, 1) and m ∈ N. There exists a natural number N and polyno-
mials p1, ..., pN such that:

• each nonzero term in the expansion of pn has a degree greater than m and less than
the degree of each term in the expansion of pn+1,

• |pn| < a on ∂Ω,

•
∣

∣

∣∑
N
k=1 pk

∣

∣

∣
< 1 on ∂Ω,

• σ
(

z ∈ ∂Ω :
∥

∥

∥∑
N
k=1 pk

∥

∥

∥

z
≥ 1

2

)

> 1 − ε

Proof. Let γ > 0 be the number from Lemma 2. We define a sequence of polyno-
mials {pk}∞

k=1 with the following properties:

1. each nonzero term in the expansion of pk has a degree greater than m and
less than the degree of each term in the expansion of pk+1,

2.
∣

∣

∣∑
k
j=1 pj

∣

∣

∣
< 1 on ∂Ω,

3. |pk| < min
{

a, 1 −
∣

∣

∣∑
k−1
j=1 pj

∣

∣

∣

}

on ∂Ω, (k > 1) ,
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4. if k > 1 then the circular, compact set:

Tk :=







z ∈ ∂Ω : ‖pk‖z ≥ γ

∥

∥

∥

∥

∥

min

{

a, 1 −
∣

∣

∣

∣

∣

k−1

∑
j=1

pj

∣

∣

∣

∣

∣

}
∥

∥

∥

∥

∥

z







has the property: σ(Tk) > 1 − ε2−k.

Let p1 = 0. The properties (1)-(3) are fulfilled for k = 1. Now suppose that we
have defined p1, ..., pk with the properties (1)-(4). Due to Lemma 2 used for the
data:

κ := max
j

deg pj, ε̃ := ε2−k−1, h := min

{

a, 1 −
∣

∣

∣

∣

∣

k

∑
j=1

pj

∣

∣

∣

∣

∣

}

there exists a polynomial pk+1 with the following properties:

• each nonzero monomial in pk+1 has a degree greater than κ,

• |pk+1| < h on ∂Ω,

• σ ({z ∈ ∂Ω : ‖pk+1‖z ≥ γ ‖h‖z}) > 1 − ε̃ = 1 − ε2−k−1.

Now we observe that the properties (1),(3),(4) are obvious. Since:
∣

∣

∣

∣

∣

k+1

∑
j=1

pj

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

k

∑
j=1

pj

∣

∣

∣

∣

∣

+ |pk+1| <
∣

∣

∣

∣

∣

k

∑
j=1

pj

∣

∣

∣

∣

∣

+ 1 −
∣

∣

∣

∣

∣

k

∑
j=1

pj

∣

∣

∣

∣

∣

= 1,

we obtain the property (2), which finishes the construction of the sequence {pk}.
Let us consider {pk}∞

k=1 and {Tk}∞
k=2 with properties (1)-(4). We can define a

compact, circular set T :=
⋂∞

j=2 Tj and calculate:

σ(∂Ω \ T) ≤
∞

∑
j=2

σ(∂Ω \ Tj) <
∞

∑
j=2

ε2−j
< ε.

In particular σ(T) > 1 − ε. Let us consider a sequence of continuous functions:

gk : T ∋ z 7→
∥

∥

∥∑
k
j=1 pj

∥

∥

∥

z
. Since gk < 1 and gk ≤ gk+1 there exists limk→∞ gk(z) ≤

1. In particular ∑
∞
j=1

∥

∥pj

∥

∥

2

z
≤ 1, which implies that limk→∞

∥

∥pj

∥

∥

z
= 0 for z ∈ T.

Since ‖pk‖z ≥ γ
∥

∥

∥
min

{

a, 1 −
∣

∣

∣∑
k−1
j=1 pj

∣

∣

∣

}
∥

∥

∥

z
we have limk→∞

∥

∥

∥
1 −

∣

∣

∣∑
k−1
j=1 pj

∣

∣

∣

∥

∥

∥

z
= 0,

which gives us ∑
∞
j=1

∥

∥pj

∥

∥

2

z
= 1 for z ∈ T. Since {gk} is a bounded, increasing

sequence of continuous functions with limits equal to 1 for all points z ∈ T there-
fore the sequence {gk} is uniformly convergent to 1 on T and hence there exists a
natural number N such that gN ≥ 1

2 on T. In particular

T ⊂
{

z ∈ ∂Ω :

∥

∥

∥

∥

∥

N

∑
k=1

pk

∥

∥

∥

∥

∥

z

≥ 1

2

}

,

which finishes the proof:

σ

({

z ∈ ∂Ω :

∥

∥

∥

∥

∥

N

∑
k=1

pk

∥

∥

∥

∥

∥

z

≥ 1

2

})

≥ σ(T) > 1 − ε.
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Now we are able to prove the main Theorem:

Proof. Given j ∈ N due to Lemma 3 there exist a natural number Nj and nonzero
polynomials pj,1, ..., pj,Nj

such that

1. each nonzero term in the expansion of pj,i has a degree less than the degree
of each term in the expansion of pj,i+1 or pj+1,k for all 1 ≤ k ≤ Nj+1,

2.
∣

∣pj,i

∣

∣ < 2−j on ∂Ω,

3.
∣

∣

∣∑
Nj

i=1 pj,i

∣

∣

∣
< 1 on ∂Ω,

4. if Tj :=
{

z ∈ ∂Ω :
∥

∥

∥∑
Nj

i=1 pj,i

∥

∥

∥

z
≥ 1

2

}

then σ(Tj) > 1 − 2−j.

Let us define

f =
∞

∑
j=1

1

j2

Nj

∑
i=1

pj,i.

The property (3) guarantees that we have just defined a holomorphic function
which is continuous to the boundary.

Given j, i let I(j, i) denotes all degrees of homogeneous polynomials in homo-
geneous expansion of pj,i:

pj,i = ∑
m∈I(j,i)

pj,i,m

where pj,i,m denotes a homogeneous polynomial of a degree m. Using these
homogeneous polynomials we can obtain the expansion in Taylor coefficients for
slice functions of f :

f (λz) =
∞

∑
j=1

1

j2

Nj

∑
i=1

∑
m∈I(j,i)

pj,i,m(z)λ
m .

Let s ∈ (0, 2). We can observe ∑m

∥

∥pj,i,m

∥

∥

2

z
=
∥

∥pj,i

∥

∥

2

z
. Since 0 <

s
2 < 1 we can use

a triangle inequality in the metric space l
s
2 to achieve:

∥

∥pj,i

∥

∥

s

z
=
(

∥

∥pj,i

∥

∥

2

z

)s/2

=

(

∑
m

∥

∥pj,i,m

∥

∥

2

z

)s/2

≤ ∑
m

(

∥

∥pj,i,m

∥

∥

2

z

)s/2

= ∑
m

∥

∥pj,i,m

∥

∥

s

z
.

The property (2) implies:
∥

∥pj,i

∥

∥

z
2j

< 1 for z ∈ ∂Ω. Now we can estimate:

∑
j,i,m

∣

∣

∣
j−2pj,i,m(z)

∣

∣

∣

s
= ∑

j,i,m

j−2s
∥

∥pj,i,m

∥

∥

s

z
≥ ∑

j,i

j−2s
∥

∥pj,i

∥

∥

s

z

≥ ∑
j,i

j−2s
∥

∥pj,i

∥

∥

s

z

(

∥

∥pj,i

∥

∥

z
2j
)2−s

= ∑
j,i

j−2s
∥

∥pj,i

∥

∥

2

z
2j(2−s)

for z ∈ ∂Ω.
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Let D :=
⋃∞

k=1

⋂∞
j=k Tj. Since σ

(

⋂∞
j=k Tj

)

≥ 1 − ∑
∞
j=k 2−j = 1 − 2−k+1 we have

σ(D) = 1.
Now we can choose z ∈ D. There exists k(z) ∈ N such that z ∈ ⋂∞

j=k(z) Tj.

Using the property (4) we can estimate:

∑
j,i,m

∣

∣

∣
j−2pj,i,m(z)

∣

∣

∣

s
≥ ∑

j,i

j−2s
∥

∥pj,i

∥

∥

2

z
2j(2−s) ≥

∞

∑
j=k(z)

j−2s2j(2−s)
Nj

∑
i=1

∥

∥pj,i

∥

∥

2

z

≥ 1

4

∞

∑
j=k(z)

j−2s2j(2−s) = ∞,

which finishes the proof.
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