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Abstract

We apply the averaging theory of first order to study analytically fami-
lies of periodic orbits for a three dimensional logarithmic galactic potential

H =
1

2
(p2

x + p2
y + p2

z) +
v2

0

2
ln(x2 − λx3 + αy2 + bz2 + c2

b), that is relevant in

the study of elliptic galactic dynamics. We first introduce a scale transforma-
tion in the coordinates and momenta with a parameter ε and we find, using
averaging theory of first order in ε, the existence up to three periodic orbits
if α, β are irrational, and one periodic orbit if either α is irrational and β is
rational, or β is irrational and α is rational, for ε sufficiently small.

1 Introduction and statement of the main results

We consider the Hamiltonian

H = H(x, y, z, px, py, pz) =
1

2
(p2

x + p2
y + p2

z) + V(x, y, z),

where the potential V = V(x, y, z) is given by

V =
v2

0

2
ln(x2 − λx3 + αy2 + bz2 + c2

b),

where α, b are the flattening parameters, cb is the scale length of the bulge com-
ponent, while the parameter λ ≪ 1 introduces a small asymmetry in the sys-
tem (see [2]). The parameter v0 stands for the consistency of the galactic units.
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The choice of this potential is justified by the fact that triaxilities are common in
elliptical galaxies (see e.g. [4], [9], [1], [5], [11]). Due to the fact that λ ≪ 1 we will
replace in the following λ by ελ where ε is a small parameter. So the Hamiltonian
will be

H(x, y, z, px, py, pz) =
1

2
(p2

x + p2
y + p2

z) +
v2

0

2
ln(x2 − ελx3 + αy2 + bz2 + c2

b). (1)

We start with the Hamiltonian system associated to the logarithmic poten-
tials (1), having the first integral given by the total energy H whose logarithmic
Hamiltonian system is given by

ẋ =
∂H

∂px
= px ,

ẏ =
∂H

∂py
= py,

ż =
∂H

∂pz
= pz,

ṗx = −∂H

∂x
= − v2

0(2x − 3ελx2)

2(c2
b + x2 + αy2 + bz2 − ελx3)

,

ṗy = −∂H

∂y
= − av2

0y

c2
b + x2 + αy2 + bz2 − ελx3

,

ṗz = −∂H

∂z
= − bv2

0z

c2
b + x2 + αy2 + bz2 − ελx3

.

(2)

We denote the vector field associated to equation (2) by F :

F = F (x, y, z, px, py, pz) :=
(

px, py, pz,− v2
0(2x − 3ελx2)

2(c2
b + x2 + αy2 + bz2 − ελx3)

,

− av2
0y

c2
b + x2 + αy2 + bz2 − ελx3

,− bv2
0z

c2
b + x2 + αy2 + bz2 − ελx3

)

.

After introducing a non-canonical scale transformation in the coordinates and
momenta with a parameter ε of the form

{x →
√

εx, y →
√

εy, z →
√

εz, px →
√

εpx, py →
√

εpy, pz →
√

εpz}
the Hamiltonian system (2) can be reduced to study the differential system

ẋ = px,

ẏ = py,

ż = pz,

ṗx = −v2
0x

c2
b

+ ε
v2

0x3 + αv2
0xy2 + bv2

0xz2

c4
b

+O(ε2),

ṗy = −αv2
0y

c2
b

+ ε
αv2

0x2y + α2v2
0y3 + αbv2

0yz2

c4
b

+O(ε2),

ṗz = −bv2
0z

c2
b

+ ε
bv2

0x2z + αbv2
0y2z + b2v2

0z3

c4
b

+O(ε2),

(3)
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having the first integral

K =
1

2
v2

0 ln c2
b + ε

c2
b(p2

x + p2
y + p2

z) + v2
0(x

2 + αy2 + bz2)

2c2
b

− ε2 v2
0(x

2 + αy2 + bz2)2

4c4
b

+O(ε3).

As K is a first integral, also H = (K − 1
2 v2

0 ln c2
b)/ε is a first integral, and we are

going to use this first integral

H =
c2

b(p2
x + p2

y + p2
z) + v2

0(x
2 + αy2 + bz2)

2c2
b

− ε
v2

0(x
2 + αy2 + bz2)2

4c4
b

+O(ε2).

Thus, the conditions for finding families of periodic orbits using the averaging
theory up to first order in ε, apply for this system.

We apply the averaging theory of first order in the small parameter ε to compute
periodic orbits of a perturbed periodic differential system depending on ε. We
recall in section 2 the basic theorem of this tool: the Averaging Theorem of first
order. This theorem provides, under certain conditions, perturbed periodic orbits
for ε sufficiently small that bifurcate from some unperturbed periodic orbits for
ε = 0. The method goes back to [6] and [7], and a shorter proof is given by [3].
For a general introduction to the averaging theory see the books [8] and [10].

We find five families of periodic orbits parameterized by the energy when

the parameters α and b are such that
√

α or/and
√

b are irrational, all of them
bifurcating from unperturbed periodic orbits around the center: one bifurcat-
ing from the two-dimensional plane (x, 0, 0, px, 0, 0), another one from the two-
dimensional plane (0, y, 0, 0, py, 0) and another one from the two-dimensional

plane (0, 0, z, 0, 0, pz). When
√

α and
√

b are rational, the Averaging Theorem
gives no information about periodic orbits.

Our main results on the periodic orbits of the tridimensional logarithmic Hamil-
tonian systems is summarized in the next three theorems, which is proved in sec-
tion. 4. We denote the periodic solutions γi(t) = (x(t), y(t), z(t), px (t), py(t), pz(t))
for i = 1, . . . , 5.

Theorem 1. The following statements hold for the perturbed differential system (3):

(a) For ε > 0 sufficiently small and
√

α and
√

b irrational, at every energy level
H = h > 0, it has at least one periodic solution γ1(t) such that

γ1(0) → ( cb

√
2h

v0
, 0, 0, 0, 0, 0); at least one periodic solution γ2(t) satisfying

γ2(0) → (0, cb

√
2h√

αv0
, 0, 0, 0, 0) and at least one periodic solution γ3(t) such that

γ3(0) → (0, 0, cb

√
2h√

bv0
, 0, 0, 0);

(b) For ε > 0 sufficiently small,
√

α irrational and
√

b rational, at every energy level
H = h > 0 it has at least one periodic solution γ4(t) such that

γ4(0) → (0, cb

√
2h√

αv0
, 0, 0, 0, 0);
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(c) For ε > 0 sufficiently small,
√

α rational and
√

b irrational, at every energy level

H = h > 0 it has at least one periodic γ5(t) satisfying γ5(0) → (0, 0, cb

√
2h√

bv0
, 0, 0, 0).

2 The averaging theory of first order

Now we shall provide the basic results from averaging theory that we need for
proving the results of this paper.

We consider the problem of the bifurcation of T-periodic solutions from the
differential system

ẋ(t) = F0(t, x) + εF1(t, x) + ε2F2(t, x, ε), (4)

with ε 6= 0 sufficiently small. Here the functions F0, F1 : R × Ω → R
n and

F2 : R ×Ω× (−ε f , ε f ) → R
n are C2 functions, T-periodic in the first variable, and

Ω is an open subset of R
n. One of the main assumptions is that the unperturbed

system
ẋ(t) = F0(t, x) (5)

has a k-dimensional submanifold of T-periodic solutions. We assume that the
coordinates have been taken in such a way that the k-dimensional submanifold
of periodic orbits is contained in {x1, . . . , xk, 0, . . . , 0} ∈ Ω. A solution of this
problem is given using the averaging theory.

Let x(t, z) be the solution of the unperturbed system (5) such that x(0, z) = z.
We write the linearization of the unperturbed system along the periodic solution
x(t, z) as

ẏ(t) = DxF0(t, x(t, z))y. (6)

In what follows we denote by Mz(t) some fundamental matrix of the linear
differential system (6), and by ξ : R

k × R
n−k → R

k the projection of R
n onto

its first k coordinates; i.e., ξ(x1, . . . , xn) = (x1, . . . , xk).

Theorem 2 (Averaging Theorem of first order). Let V ⊂ R
k be open and bounded,

and let β0 : Cl(V) → R
n−k be a C2 function. We assume that

(i) Z = {zα = (α, β0(α)), α ∈ Cl(V) ⊂ Ω} and that for each zα ∈ Z the solution
x(t, zα) of (5) is T-periodic;

(ii) for each zα ∈ Z there is a fundamental matrix Mzα(t) of (6) such that the matrix
M−1

zα
(0)− M−1

zα
(T) has in the upper right corner the k× (n − k) zero matrix, and

in the lower right corner a (n − k)× (n − k) matrix ∆α with det ∆α 6= 0.

We consider the function F : Cl(V) → R
k

F (α) = ξ

(

∫ T

0
M−1

zα
(t)F1(t, x(t, zα))dt

)

. (7)

If there exists a ∈ V with F (a) = 0 and

det
(

(dF/dα)(a)
)

6= 0, (8)

then there exists a T-periodic solution ϕ(t, ε) of system (4) such that ϕ(0, ε) → zα as
ε → 0.
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3 The scale transformation and the first order differential sys-

tem

Of course, the Hamiltonian system (2) is not into the normal form (4) for applying
the averaging theory. So we first introduce a non-canonical rescaling transforma-
tion with a factor

√
ε in order to have a small parameter ε > 0 in the differential

system

{x →
√

εx, y →
√

εy, z →
√

εz, px →
√

εpx, py →
√

εpy, pz →
√

εpz}.

The differential system (2) of the logarithm potential in the rescaled variables is
given by

ẋ = px ,

ẏ = py,

ż = pz,

ṗx = − v2
0(2x

√
ε − 3x2ε2λ)

2
√

ε(c2
b + εx2 + εαy2 + εbz2 − ε5/2λx3)

,

ṗy = − αv2
0y

c2
b + εx2 + εαy2 + εbz2 − ε5/2λx3

,

ṗz = − bv2
0z

c2
b + εx2 + εαy2 + εbz2 − ε5/2λx3

,

(9)

with the first integral

H =
ε

2
(p2

x + p2
y + p2

z) +
v2

0

2
ln(εx2 − ε5/2λx3 + εαy2 + εbz2 + c2

b).

As the change to the new variables is only a rescaling transformation, the differ-
ential system (9) for all ε > 0 is topologically equivalent to the Hamiltonian sys-
tem (2). Therefore studying the differential system (9) for small values of ε 6= 0,
we are also studying the original Hamiltonian system (2) with ε = 1. Now we
expand equation (9) in powers of the small parameter ε and the first integral H
up to first order in ε, thus we have

ẋ = px ,

ẏ = py,

ż = pz,

ṗx = −v2
0x

c2
b

+ ε
v2

0x3 + αv2
0xy2 + bv2

0xz2

c4
b

+O(ε2),

ṗy = −αv2
0y

c2
b

+ ε
αv2

0x2y + α2v2
0y3 + αbv2

0yz2

c4
b

+O(ε2),

ṗz = −bv2
0z

c2
b

+ ε
bv2

0x2z + αbv2
0y2z + b2v2

0z3

c4
b

+O(ε2),

(10)
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and the first integral becomes

K =
1

2
v2

0 ln c2
b + ε

c2
b(p2

x + p2
y + p2

z) + v2
0(x

2 + αy2 + bz2)

2c2
b

− ε2 v2
0(x

2 + αy2 + bz2)2

4c4
b

+O(ε3).

As K is a first integral, also H = (K − 1
2v2

0 ln c2
b)/ε is a first integral, and we are

going to use this first integral

H =
c2

b(p2
x + p2

y + p2
z) + v2

0(x
2 + αy2 + bz2)

2c2
b

− ε
v2

0(x
2 + αy2 + bz2)2

4c4
b

+O(ε2).

(11)
The unperturbed equations with ε = 0 represent a tridimensional harmonic
oscillator that can be easily solved with arbitrary initial conditions x(0) = x0,
y(0) = y0, z(0) = z0, px(0) = px0 , py(0) = py0 , pz(0) = pz0

x(t) = x0 cos
( tv0

cb

)

+
cb px0

v0
sin

( tv0

cb

)

,

px(t) = px0 cos
( tv0

cb

)

− v0x0

cb
sin

( tv0

cb

)

,

y(t) = y0 cos
( t

√
αv0

cb

)

+
cb py0√

αv0
sin

( t
√

αv0

cb

)

,

py(t) = py0 cos
( t

√
αv0

cb
v
)

−
√

αv0y0

cb
sin

( t
√

αv0

cb

)

,

z(t) = z0 cos
( t

√
bv0

cb

)

+
cb pz0√

bv0

sin
( t

√
bv0

cb

)

,

pz(t) = pz0 cos
( t

√
bv0

cb

)

−
√

bv0z0

cb
sin

( t
√

bv0

cb

)

.

We have the following situations:

(A) If
√

α and
√

b are rational then the dimension of the space generated by the
periodic solutions is six.

(B) If
√

α is rational and
√

b is irrational then we have the periodic solutions
(x(t), y(t), 0, px(t), py(t), 0). Then the dimension of the space generated by
the periodic solutions is four. Moreover in this case we also have a plane
generated by periodic solutions, namely (0, 0, z(t), 0, 0, pz(t)).

(C) If
√

α is irrational and
√

b is rational then we have the periodic solutions
(x(t), 0, z(t), px (t), 0, pz(t)). Then the dimension of the space generated by
the periodic solutions is four. Moreover in this case we also have a plane
generated by periodic solutions, namely (0, y(t), 0, 0, py(t), 0).

(D) If
√

α and
√

b are irrational then we have three planes generated by
periodic solutions, namely the plane (x(t), 0, 0, px(t), 0, 0), the plane
(0, y(t), 0, 0, py(t), 0) and the plane (0, 0, z(t), 0, 0, pz(t)).
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However, using the averaging method of section 2 we was able to find periodic
orbits just in the planar cases.

4 Proof of Theorem 1

We start to consider the case when both
√

α and
√

b are irrational and the unper-
turbed periodic orbit at the plane (x(t), 0, 0, px(t), 0, 0)

x(t) = x0 cos
( tv0

cb

)

+
cb px0

v0
sin

( tv0

cb

)

,

px(t) = px0 cos
( tv0

cb

)

− v0x0

cb
sin

( tv0

cb

)

,

y(t) = 0,

py(t) = 0,

z(t) = 0,

pz(t) = 0,

with the first integral (11) when ε = 0 taking the energy value

h =
c2

b p2
x0
+ v2

0x2
0

2c2
b

. (12)

Generically, the periodic orbits of a Hamiltonian system with more than one
degree of freedom are on cylinders filled of periodic orbits. Therefore we
cannot apply directly the Averaging Theorem to the Hamiltonian system, since
the determinant (8) would be always zero. Then we must apply Averaging
Theorem to every Hamiltonian fixed level where the periodic orbits generically
are isolated. This allows to eliminate one of the coordinates, say px, and to reduce
the study to dimension five.

We thus compute px at the energy level H = h with H given by (11) and h
given by (12) and we take the expansion to first order in ε. We introduce the
notation

Rb,α,v0,x0,cb
=

√

c2
b

(

c2
b

(

− p2
y − p2

z +
c2

b p2
x0
+ v2

0x2
0

c2
b

)

− v2
0(x

2 + αy2 + bz2)
)

and we obtain

px = ±Rb,α,v0,x0,cb

c2
b

± ε
v2

0(x
2 + αy2 + bz2)2

4c2
bRb,α,v0,x0,cb

+O(ε2). (13)

We will consider first the positive solution for px. The equations of motion (10)
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on the energy level H = h are given by

ẋ =
Rb,α,v0,x0,cb

c2
b

+ ε
v2

0(x
2 + αy2 + bz2)2

4c2
bRb,α,v0,x0,cb

+O(ε2),

ṗy = −αv2
0y

c2
b

+ ε
αv2

0x2y + α2v2
0y3 + αbv2

0yz2

c4
b

+O(ε2),

ẏ = py,

ṗz = −bv2
0z

c2
b

+ ε
bv2

0x2z + αbv2
0y2z + b2v2

0z3

c4
b

+O(ε2),

ż = pz.

(14)

Now the differential system (14) has the form of (4), where

F0(x, py, y, pz, z) =
(Rb,α,v0,x0,cb

c2
b

,−αv2
0y

c2
b

, py,−bv2
0z

c2
b

, pz

)

and

F1(x, py, y, pz, z) =
(v2

0(x
2 + αy2 + bz2)2ε

4c2
bRb,α,v0,x0,cb

,
αv2

0x2y + α2v2
0y3 + αbv2

0yz2

c4
b

,

0,
bv2

0x2z + αbv2
0y2z + b2v2

0z3

c4
b

, 0
)

,

with the unperturbed solution (x0 cos( tv0
cb
) +

cb px0
v0

sin( tv0
cb
), 0, 0, 0, 0).

Set

Sb,α,v0,x0,cb
=

√

c2
b

(

c2
b p2

x0
+ v2

0x2
0 − v2

0

(

x0 cos(
tv0

cb
) +

cbpx0

v0
sin(

tv0

cb
)
)2
)

.

Now we compute the linearization of the unperturbed system along the periodic
solution, DxF0(t, x(t, zx0))





























−
v2

0

(

x0 cos(
tv0
cb

)+
cbpx0

v0
sin(

tv0
cb

)
)

Sb,α,v0,x0,cb

0 0 0 0

0 0 − αv2
0

c2
b

0 0

0 1 0 0 0

0 0 0 0 − bv2
0

c2
b

0 0 0 1 0





























.
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and the fundamental matrix Mzx0
(t) is obtained solving (6), that is, it is equal to



































cos(
tv0
cb

)− v0x0
cb px0

sin(
tv0
cb

) 0 0 0 0

0 cos(
√

αtv0
cb

) −
√

αv0
cb

sin(
√

αtv0
cb

) 0 0

0
cb√
αv0

sin(
√

αtv0
cb

) cos(
√

αtv0
cb

) 0 0

0 0 0 cos(
√

btv0
cb

) −
√

bv0
cb

sin(
√

btv0
cb

)

0 0 0
cb√
bv0

sin(
√

btv0
cb

) cos(
√

btv0
cb

)



































,

which satisfies Mzx0
(0) = I, and the inverse, M−1

zx0
(t) is given by



















cb px0

cb px0 cos(
tv0
cb

)−v0x0 sin(
tv0
cb

)
0 0 0 0

0 cos(
√

αtv0
cb

)
√

αv0
cb

sin(
√

αtv0
cb

) 0 0

0 − cb√
αv0

sin(
√

αtv0
cb

) cos(
√

αtv0
cb

) 0 0

0 0 0 cos(

√
btv0
cb

)

√
bv0
cb

sin(

√
btv0
cb

)

0 0 0 − cb√
bv0

sin(

√
btv0
cb

) cos(

√
btv0
cb

)



















.

In order to apply the Averaging Theorem, we verify the condition det ∆x0 6= 0,
thus we compute

M−1
zx0

(0)−M−1
zx0

(
2πcb

v0
)=































0 0 0 0 0

0 1−cos(2
√

απ) −
√

αv0
cb

sin(2
√

απ) 0 0

0
cb√
αv0

sin(2
√

απ) 1−cos(2
√

απ) 0 0

0 0 0 1−cos(2
√

bπ) −
√

bv0
cb

sin(2
√

bπ)

0 0 0
cb√
bv0

sin(2
√

bπ) 1−cos(2
√

bπ)































.

In the upper right corner, the 1 × 4 matrix is zero, and for each zx0 in the lower

right corner the matrix ∆x0 has determinant non-zero, ∆x0 = 16 sin2(
√

απ) sin2(
√

bπ)

since
√

α and
√

b are both irrational.

The function F1 along the periodic orbit is given by

F1(t, x(t, zx0 )) =
(v2

0(x0 cos( tv0
cb
) +

cb px0
v0

sin( tv0
cb
))4

4c2
bSb,α,v0,x0,cb

, 0, 0, 0, 0
)

,

and we must apply to it the inverse of the fundamental matrix

M−1
zx0

(t)F1(t, x(t, zx0 )) =
( px0 v2

0(x0 cos( tv0
cb
) +

cb px0
v0

sin( tv0
cb
))4

4cb(cb px0 cos( tv0
cb
)− v0x0 sin( tv0

cb
))Sb,α,v0 ,x0,cb

, 0, 0, 0, 0
)

.

(15)
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The function F (x0) defined in (7) is the projection ξ in the first component of the
integral of (15) in one period

F (x0) =
∫

2πcb
v0

0

px0 v2
0(x0 cos( tv0

cb
) +

cb px0
v0

sin( tv0
cb
))4

4cb(cb px0 cos( tv0
cb
)− v0x0 sin( tv0

cb
))Sb,α,v0 ,x0,cb

dt

= −
3πpx0(c

2
b p2

x0
+ v2

0x2
0)

4cbv3
0

,

where px0 = ±
√

2c2
bh−v2

0x2
0

cb
at the energy level (12), thus

F (x0) = ±
3πh

√

2c2
bh − v2

0x2
0

2v3
0

.

Now we look for the zeros of F (x0) = 0 : x0 = ± cb

√
2h

v0
which implies px0 = 0.

Every simple zero of F (x0) provides a periodic orbit for the perturbed differ-
ential system in the energy level H = h > 0. Finally, the negative solution of
(13) provides the same solutions as the positive one because px0 = 0. Note that

both initial conditions (± cb

√
2h

v0
, 0, 0, 0, 0, 0)provides the same periodic orbits. This

conclude the first statement in Theorem 1(a).

Now we consider the case when both
√

α and
√

b are irrational or the case
when

√
α is irrational and

√
b is rational, and the unperturbed periodic orbit at

the plane (0, y(t), 0, 0, py(t), 0)

x(t) = 0,

px(t) = 0,

y(t) = y0 cos
( t

√
αv0

cb

)

+
cbpy0√

αv0
sin

( t
√

αv0

cb

)

,

py(t) = py0 cos
( t

√
αv0

cb

)

− v0y0
√

α

cb
sin

( t
√

αv0

cb

)

,

z(t) = 0,

pz(t) = 0,

with the first integral (11) when ε = 0 taking the energy value

h =
c2

b p2
y0
+ v2

0αy2
0

2c2
b

. (16)

Like in the previous case we eliminate now py, and we reduce the study to
dimension five.

Let

Ub,α,v0,y0,cb
=

√

√

√

√c2
b

(

c2
b

(

− p2
x − p2

z +
c2

b p2
y0
+ αv2

0y2
0

c2
b

)

− v2
0(x

2 + αy2 + bz2)
)

.
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We compute py at the energy level H = h with H given by (11) and h given by
(16) and we take the expansion to first order in ε

py = ±
Ub,α,v0,y0,cb

c2
b

± ε
v2

0(x
2 + αy2 + bz2)2

4c2
bUb,α,v0,y0,cb

+O(ε2).

We will consider first the positive solution for py. The equations of motion (10)
on the energy level H = h are given by

ẏ =
Ub,α,v0,y0,cb

c2
b

+ ε
v2

0(x
2 + αy2 + bz2)2

4c2
bUb,α,v0,y0,cb

+O(ε2),

ṗx = −v2
0x

c2
b

+ ε
v2

0x3 + αv2
0xy2 + bv2

0xz2

c4
b

+O(ε2),

ẋ = px,

ṗz = −bv2
0z

c2
b

+ ε
bv2

0x2z + αbv2
0y2z + b2v2

0z3

c4
b

+O(ε2),

ż = pz.

(17)

Now the differential system (17) has the form of (4), where

F0(y, px , x, pz, z) =
(Ub,α,v0,y0,cb

c2
b

,−v2
0x

c2
b

,−bv2
0z

c2
b

, pz

)

and

F1(y, px , x, pz, z) =
(v2

0(x
2 + αy2 + bz2)2

4c2
bUb,α,v0,y0,cb

,
v2

0x3 + α2v2
0xy2 + bv2

0xz2

c4
b

,

0,
bv2

0x2z + αbv2
0y2z + b2v2

0z3

c4
b

, 0
)

,

with the unperturbed solution (y0 cos( t
√

αv0
cb

) +
cb py0√

αv0
sin( t

√
αv0

cb
), 0, 0, 0, 0).

Set now

Vb,α,v0,y0,cb
=

√

c2
b

(

c2
b p2

y0
+ αv2

0y2
0 − αv2

0

(

y0 cos(
t
√

αv0

cb
) +

cb py0√
αv0

sin(
t
√

αv0

cb
)
)2
)

.

Now we compute the linearization of the unperturbed system along the periodic
solution, DxF0(t, x(t, zx0))





























−
αv2

0

(

y0 cos(
t
√

αv0
cb

)+
cbpy0√

αv0
sin(

t
√

αv0
cb

)
)

Vb,α,v0,y0,cb
0 0 0 0

0 0 − v2
0

c2
b

0 0

0 1 0 0 0

0 0 0 0 − bv2
0

c2
b

0 0 0 1 0





























.
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and the fundamental matrix Mzx0
(t) is obtained solving (6) and is equal to





















cos(
t
√

αv0
cb

)− v0y0
√

α
cb py0

sin(
t
√

αv0
cb

) 0 0 0 0

0 cos(
tv0
cb

) − v0
cb

sin(
tv0
cb

) 0 0

0
cb
v0

sin(
tv0
cb

) cos(
tv0
cb

) 0 0

0 0 0 cos(
√

btv0
cb

) −
√

bv0
cb

sin(
√

btv0
cb

)

0 0 0
cb√
bv0

sin(
√

btv0
cb

) cos(
√

btv0
cb

)





















,

which satisfies Mzx0
(0) = I, and the inverse M−1

zx0
(t) is given by



















cb py0

cb py0 cos(
t
√

αv0
cb

)−√
αv0y0 sin(

t
√

αv0
cb

)
0 0 0 0

0 cos(
tv0
cb

)
v0
cb

sin(
tv0
cb

) 0 0

0 − cb
v0

sin(
tv0
cb

) cos(
tv0
cb

) 0 0

0 0 0 cos(

√
btv0
cb

)

√
bv0
cb

sin(

√
btv0
cb

)

0 0 0 − cb√
bv0

sin(

√
btv0
cb

) cos(

√
btv0
cb

)



















.

In order to apply the Averaging Theorem, we verify the condition det ∆x0 6= 0,
thus we compute

M−1
zx0

(0)−M−1
zx0

(
2πcb
v0

√
α
)=





























0 0 0 0 0

0 1−cos( 2π√
α
) − v0

cb
sin( 2π√

α
) 0 0

0
cb
v0

sin( 2π√
α
) 1−cos( 2π√

α
) 0 0

0 0 0 1−cos( 2
√

bπ√
α
) −

√
bv0
cb

sin( 2
√

bπ√
α
)

0 0 0
cb√
bv0

sin( 2
√

bπ√
α
) 1−cos( 2

√
bπ√
α
)





























.

In the upper right corner, the 1 × 4 matrix is zero, and for each zx0 in the lower

right corner the matrix ∆x0 has determinant non-zero, ∆x0 = 16 sin2( π√
α
) sin2(

√
bπ√
α
)

since
√

α and
√

b are both irrational, or
√

α is irrational and
√

b is rational.

The function F1 along the periodic orbit is given by

F1(t, x(t, zx0)) =
(α2v2

0(y0 cos( t
√

αv0
cb

) +
cb py0√

αv0
sin( t

√
αv0

cb
))4

4c2
bVb,α,v0,y0,cb

, 0, 0, 0, 0
)

,

and we must apply to it the inverse of the fundamental matrix

M−1
zx0

(t)F1(t, x(t, zx0))

=
( α2py0 v2

0(y0 cos( t
√

αv0
cb

) +
cb py0√

αv0
sin( t

√
αv0

cb
))4

4cb(cb py0 cos( t
√

αv0
cb

)−√
αv0y0 sin( t

√
αv0

cb
))Vb,α,v0,y0,cb

, 0, 0, 0, 0
)

.
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The function F (x0) defined in (7) is the projection ξ in the first component of the
integral of (15) in one period

F (x0) =
∫

2πcb
v0

0

α2py0 v2
0(y0 cos( t

√
αv0

cb
) +

cb py0√
αv0

sin( t
√

αv0
cb

))4

4cb(cb py0 cos( t
√

αv0
cb

)−√
αv0y0 sin( t

√
αv0

cb
))Vb,α,v0,y0,cb

dt

= −
3πpy0(c

2
b p2

y0
+ αv2

0y2
0)

4
√

αcbv3
0

,

where py0 = ±
√

2c2
bh−αv2

0y2
0

cb
at the energy level (12), thus

F (x0) = ±
3πh

√

2c2
bh − αv2

0y2
0

2
√

αv3
0

.

Now we look for the zeros of F (x0) = 0. They satisfy y0 = ± cb

√
2h√

αv0
which implies

py0 = 0. Every simple zero of F (x0) provides a periodic orbit for the perturbed
differential system in the energy level H = h > 0. Finally, the negative solution
of (13) provides the same solutions as the positive one because py0 = 0. Note

that both initial conditions (0,± cb

√
2h√

αv0
, 0, 0, 0, 0) provides the same periodic orbits.

This conclude the second case of Theorem 1(a) and also Theorem 1(b).

Finally we consider the case when both
√

α and
√

b are irrational or the case

when
√

α is rational and
√

b is irrational, and the unperturbed periodic orbit at
the plane (0, 0, z(t), 0, 0, pz(t))

x(t) = 0,

px(t) = 0,

y(t) = 0,

py(t) = 0,

z(t) = z0 cos
( t

√
bv0

cb

)

+
cb pz0√

bv0

sin
( t

√
bv0

cb

)

,

pz(t) = pz0 cos
( t

√
bv0

cb

)

− v0z0

√
b

cb
sin

( t
√

bv0

cb

)

,

with the first integral (11) when ε = 0 taking the energy value

h =
c2

b p2
z0
+ v2

0bz2
0

2c2
b

. (18)

Now we eliminate pz to reduce the study to dimension five.

Let

Wb,α,z0,y0,cb
=

√

c2
b

(

c2
b

(

− p2
x − p2

y +
c2

b p2
z0
+ bv2

0z2
0

c2
b

)

− v2
0(x

2 + αy2 + bz2)
)

.
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We compute pz at the energy level H = h with H given by (11) and h given by
(18) and we take the expansion to first order in ε

pz = ±
Wb,α,z0,y0,cb

c2
b

± ε
v2

0(x
2 + αy2 + bz2)2

4c2
bWb,α,z0,y0,cb

+O(ε2).

We will consider first the positive solution for pz. The equations of motion (10)
on the energy level H = h are given by

ż = pz,

ṗy = −αv2
0y

c2
b

+ ε
αv2

0x2y + α2v2
0y3 + αbv2

0yz2

c4
b

+O(ε2),

ẏ = py,

ṗx = −v2
0x

c2
b

+ ε
v2

0x3 + αv2
0xy2 + bv2

0xz2

c4
b

+O(ε2),

ẋ = px.

(19)

Now the differential system (19) has the form of (4), where

F0(z, py, y, px, x) =
(Wb,α,z0,y0,cb

c2
b

,−αv2
0y

c2
b

, py,−v2
0x

c2
b

, px

)

and

F1(z, py, y, px, x) =
(v2

0(x
2 + αy2 + bz2)2

4c2
bWb,α,z0,y0,cb

,
αv2

0x2y + α2v2
0y3 + αbv2

0yz2

c4
b

,

0,
v2

0x3 + αv2
0xy2 + bv2

0xz2

c4
b

, 0
)

,

with the unperturbed solution (z0 cos( t
√

bv0
cb

) +
cb pz0√

bv0
sin( t

√
bv0

cb
), 0, 0, 0, 0).

Set now

Xb,α,v0,z0,cb
=

√

c2
b

(

c2
b p2

z0
+ bv2

0z2
0 − bv2

0

(

z0 cos(
t
√

bv0

cb
) +

cbpz0√
bv0

sin(
t
√

bv0

cb
)
)2
)

.

Now we compute the linearization of the unperturbed system along the periodic
solution, DxF0(t, x(t, zx0))





























−
bv2

0

(

z0 cos(
t
√

bv0
cb

)+
cbpz0√

bv0
sin(

t
√

bv0
cb

)
)

Xb,α,v0,z0,cb
0 0 0 0

0 0 − αv2
0

c2
b

0 0

0 1 0 0 0

0 0 0 0 − v2
0

c2
b

0 0 0 1 0




























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and the fundamental matrix Mzx0
(t) is obtained solving (6), is given by





















cos(
t
√

bv0
cb

)− v0z0
√

b
cb pz0

sin(
t
√

bv0
cb

) 0 0 0 0

0 cos(
√

αtv0
cb

) −
√

αv0
cb

sin(
√

αtv0
cb

) 0 0

0
cb√
αv0

sin(
√

αtv0
cb

) cos(
√

αtv0
cb

) 0 0

0 0 0 cos(
tv0
cb

) − v0
cb

sin(
tv0
cb

)

0 0 0
cb
v0

sin(
tv0
cb

) cos(
tv0
cb

)





















,

which satisfies Mzx0
(0) = I, and the inverse M−1

zx0
(t) is given by



















cb pz0

cb pz0 cos(
t
√

bv0
cb

)−
√

bv0z0 sin(
t
√

bv0
cb

)

0 0 0 0

0 cos(
√

αtv0
cb

)
√

αv0
cb

sin(
√

αtv0
cb

) 0 0

0 − cb√
αv0

sin(
√

αtv0
cb

) cos(
√

αtv0
cb

) 0 0

0 0 0 cos(
tv0
cb

)
v0
cb

sin(
tv0
cb

)

0 0 0 − cb
v0

sin(
tv0
cb

) cos(
tv0
cb

)



















.

In order to apply the Averaging Theorem, we verify the condition det ∆x0 6= 0,
thus we compute

M−1
zx0

(0)−M−1
zx0

(
2πcb
v0

√
b
)=





























0 0 0 0 0

0 1−cos( 2
√

απ√
b
) −

√
αv0
cb

sin( 2
√

απ√
b
) 0 0

0
cb√
αv0

sin( 2
√

απ√
b
) 1−cos( 2

√
απ√
b
) 0 0

0 0 0 1−cos( 2π√
b
) − v0

cb
sin( 2π√

b
)

0 0 0
cb
v0

sin( 2π√
b
) 1−cos( 2π√

b
)





























.

In the upper right corner, the 1 × 4 matrix is zero, and for each zx0 in the lower

right corner the matrix ∆x0 has determinant non-zero, ∆x0 = 16 sin2( π√
b
) sin2(

√
απ√
b
)

since
√

α and
√

b are both irrational, or
√

α is rational and
√

b is irrational.

The function F1 along the periodic orbit is given by

F1(t, x(t, zx0 )) =
(b2v2

0(z0 cos( t
√

bv0
cb

) +
cb pz0√

bv0
sin( t

√
bv0

cb
))4

4c2
bXb,α,v0,z0,cb

, 0, 0, 0, 0
)

,

and we must apply to it the inverse of the fundamental matrix

M−1
zx0

(t)F1(t, x(t, zx0))

=
( b2v2

0pz0(z0 cos( t
√

bv0
cb

) +
cb pz0√

bv0
sin( t

√
bv0

cb
))4

4cb(cb pz0 cos( t
√

bv0
cb

)−
√

bv0z0 sin( t
√

bv0
cb

))Xb,α,v0 ,z0,cb

, 0, 0, 0, 0
)

.
(20)
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The function F (x0) defined in (7) is the projection ξ in the first component of the
integral of (20) in one period

F (x0) =
∫

2πcb√
bv0

0

b2v2
0pz0(z0 cos( t

√
bv0

cb
) +

cb pz0√
bv0

sin( t
√

bv0
cb

))4

4cb

(

cb pz0 cos( t
√

bv0
cb

)−
√

bv0z0 sin( t
√

bv0
cb

)
)

Xb,α,v0,z0,cb

dt

= −
3πpz0(c

2
b p2

z0
+ bv2

0z2
0)

4
√

bcbv3
0

,

where pz0 = ±
√

2c2
bh−bv2

0z2
0

cb
at the energy level (12), thus

F (x0) = ±
3πh

√

2c2
bh − bv2

0z2
0

2
√

bv3
0

.

Now we look for the zeros of F (x0) = 0. They satisfy z0 = ± cb

√
2h√

bv0
which implies

pz0 = 0. Every simple zero of F (x0) provides a periodic orbit for the perturbed
differential system in the energy level H = h > 0. Finally, the negative solution
of (13) provides the same solutions as the positive one because pz0 = 0. Note

that both initial conditions (0, 0,± cb

√
2h√

bv0
, 0, 0, 0) provides the same periodic orbits.

This conclude the third statement of Theorem 1(a) and also Theorem 1(c).
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