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Abstract

The algebra of similitudes of totally singular generalized quadratic forms
in characteristic two is investigated. It is shown that this algebra satisfies
certain functorial properties. An application of this study to central simple
algebras with orthogonal involutions is also given.

1 Introduction

Generalized quadratic forms, introduced in [13], appear as natural extensions of
quadratic forms, replacing the ground field by a division algebra with involution
modulo its set of alternating elements. These forms were widely investigated in
the literature in different aspects. See for example [2], [15], [16], [3], [1] and [14].
Although nonsingular generalized quadratic forms have been given more atten-
tion, singular forms have been also studied in the literature, either over fields or
over division algebras with involution (see [7], [4] and [11]).

In this work we investigate some properties of totally singular generalized
quadratic forms, i.e., generalized quadratic forms whose associated hermitian
forms are trivial. Since these forms are trivial in characteristic different from two,
our study is restricted to characteristic two. We first recall in §2 some
basic definitions and properties of generalized quadratic forms. In §3, simili-
tudes of totally singular generalized quadratic forms are studied. A similitude of
a generalized quadratic form q is an isometry f : q ∼−→ α · q, where α ∈ F is a
scalar, called the multiplier of q. Let (D, θ) be a division algebra with involution
of the first kind over a field F. As we will see in Proposition 3.1, for every totally
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singular generalized quadratic space (V, q) over (D, θ), the set Sim(V, q) of simil-
itudes of (V, q) is an F-algebra and its multiplier map µ(V, q) is a totally singular
quadratic form. This fact can be used to reduce the anisotropy of q over (D, θ)
to the anisotropy of µ(V, q) over (F, id) and find several anisotropy criteria for
q (see Theorem 3.5). In §4, the behaviour of the pair (Sim(V, q), µ(V, q)) under
separable extensions is studied. It is shown in Proposition 4.1 that if K/F is a sep-
arable extension for which DK is a division ring, then (Sim(VK, qK), µ(VK, qK)) ≃
(Sim(V, q), µ(V, q))K .

In [11] an algebra S(A, σ) was canonically associated to every central simple
algebra with orthogonal involution (A, σ) over F. It was shown that this algebra
carries a totally singular quadratic form qσ which determines certain anisotropy
behaviour of σ. In the last section we show that this form can be realized as the
multiplier map of similitudes of a suitable totally singular generalized quadratic
space. More precisely, it is shown in Theorem 5.1 that in a representation of (A, σ)
as (EndD(V), σh) for some hermitian space (V, h) over a division algebra with
involution of the first kind (D, θ), the algebra S(A, σ) is the algebra of similitudes
of the totally singular generalized quadratic form ϕσ : V → D/ Alt(D, θ) given
by ϕσ(v) = h(v, v) + Alt(D, θ). Also, the form qσ is the multiplier map µ(V, ϕσ).
This result can be used to complement the characterization [11, (3.8)] of direct
involutions, introduced in [5] (see Corollary 5.2).

2 Generalized quadratic forms

Throughout this paper, F denotes a field of characteristic two.
Let A be a central simple algebra over F. An involution on A is a map σ : A → A
with σ2 = id such that σ(x + y) = σ(x) + σ(y) and σ(xy) = σ(y)σ(x) for every
x, y ∈ A. If σ|F = id we say that σ is of the first kind. For an algebra with involution
(A, σ) over F and a field extension K/F the map σK := σ ⊗ id is an involution on
AK := A ⊗ K. We denote the pair (AK , σK) by (A, σ)K . An involution of the
first kind on A is called symplectic if it becomes adjoint to a symmetric alternating
bilinear form after scalar extension to a splitting field of A. Otherwise, it is called
orthogonal. The set of alternating elements of an algebra with involution (A, σ) is
defined as

Alt(A, σ) = {a − σ(a) | a ∈ A}.

Let (D, θ) be a division algebra with involution of the first kind over F and
let V be a finite-dimensional right vector space over D. A hermitian form on V
is a bi-additive map h : V × V → D satisfying h(uα, vβ) = θ(α)h(u, v)β and
h(v, u) = θ(h(u, v)) for all u, v ∈ V and α, β ∈ D. The form h is called nonsingular
if h(u, v) = 0 for all v ∈ V implies that u = 0.

A (generalized) quadratic form on V is a map q : V → D/ Alt(D, θ) such that

(i) q(vα) = θ(α)q(v)α for every v ∈ V and α ∈ D;

(ii) there exists a hermitian form hq on V such that

q(u + v)− q(u) − q(v) = hq(u, v) + Alt(D, θ) for all u, v ∈ V.
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In this case, we say that (V, q) is a quadratic space over (D, θ). According to
[1, (1.1)], the form hq is uniquely determined by q. The form q is called totally
singular if hq is trivial. We say that q is isotropic if q(v) = 0 for some nonzero
vector v ∈ V and anisotropic otherwise.

Let (V, q) be a totally singular quadratic space over (F, id). Then there exists
a decomposition q ≃ ϕ ⊥ ρ, where ϕ is an anisotropic totally singular quadratic
form and ρ is the zero form. Moreover, the form ϕ is uniquely determined, up to
isometry. We call ϕ the anisotropic part of q and we denote it by qan. Set

Q(q) = {q(v) | v ∈ V}.

Then Q(q) ⊆ F is a vector space over F2. Note that Q(qan) = Q(q). Also, the
following result is easily verified.

Lemma 2.1. Let q and q′ be totally singular quadratic forms over (F, id). Then q ≃ q′

if and only if dimF q = dimF q′ and Q(q) = Q(q′).

A quadratic space (V, q) over (F, id) is called a quasi-Pfister form if there exists
a bilinear Pfister form b : V × V → F for which q(v) = b(v, v) for all v ∈ V
(see [6, §10] for more details).

Proposition 2.2. An anisotropic totally singular quadratic form q over (F, id) is a quasi-
Pfister form if and only if Q(q) is a field.

Proof. The ‘only if’ implication can be found in [6, (10.4)]. The converse follows
from [7, (8.5)].

3 Similitudes of totally singular quadratic forms

In this section, we fix (D, θ) as a division algebra with involution of the first kind
over F and (V, q) as a totally singular quadratic space over (D, θ).

Let EndD(V) be the endomorphism algebra of V over D. For g1, g2 ∈ EndD(V)
we denote the composition g1 ◦ g2 by g1g2. A similitude of (V, q) is a map
g ∈ EndD(V) for which there exists α ∈ F such that q(g(v)) = αq(v) for every
v ∈ V. The element α ∈ F is called the multiplier of g. The set of all similitudes of
(V, q) is denoted by Sim(V, q). Let

µ(V, q) : Sim(V, q) → F

be the multiplier map which assigns to every g ∈ Sim(V, q) its multiplier. Hence,
q(g(v)) = µ(V, q)(g)q(v) for every g ∈ Sim(V, q) and v ∈ V. We will simply
denote Sim(V, q) by S and µ(V, q) by µ if no confusion arises.

Proposition 3.1. The set S is an F-subalgebra of EndD(V) and the pair (S , µ) is a
totally singular quadratic space over (F, id) satisfying µ(g1g2) = µ(g1)µ(g2) for all
g1, g2 ∈ S .

Proof. Let g1, g2 ∈ S with respective multipliers α1, α2 ∈ F. Then

q(g1g2(v)) = α1q(g2(v)) = α1α2q(v).
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Also, as (V, q) is totally singular we have

q((g1 + g2)(v)) = q(g1(v)) + q(g2(v)) = (α1 + α2)q(v).

Hence, g1g2 and g1 + g2 are similitudes of (V, q) with multipliers µ(g1g2) =
µ(g1)µ(g2) and

µ(g1 + g2) = µ(g1) + µ(g2). (1)

Further, if g ∈ S and α ∈ F, then

q(αg(v)) = α2q(g(v)) = α2µ(g)q(v) for all v ∈ V.

Hence, αg ∈ S and µ(αg) = α2µ(g). Using this and (1), one concludes that (S, µ)
is a totally singular quadratic space over (F, id), proving the result.

Lemma 3.2. The set Q(µ) is a subfield of F containing F2. In particular, µan is a quasi-
Pfister form.

Proof. Since µ(α id) = α2 for every α ∈ F we have F2 ⊆ Q(µ). By Proposition 3.1,
µ(g1 + g2) = µ(g1) + µ(g2) and µ(g1g2) = µ(g1)µ(g2) for all g1, g2 ∈ S , hence
Q(µ) is a subring of F. Let 0 6= α ∈ Q(µ). Choose a similitude g ∈ S with
α = µ(g). Then µ(α−1g) = α−2α = α−1, hence α−1 ∈ Q(µ). This proves that
Q(µ) is a field. The second statement follows from Proposition 2.2.

In view of Proposition 3.1, the map µ : S → F is a ring homomorphism. We
denote the kernel of µ by I(V, q). Hence, I(V, q) is an ideal of S . Note that

I(V, q) = {g ∈ S | q(g(v)) = 0 for all v ∈ V} = HomD(V, ker q).

In particular, I(V, q) is a right ideal of EndD(V). We will simply denote I(V, q)
by I .

Proposition 3.3. The quotient ring S/I is a field. In particular, I is a maximal ideal of
S .

Proof. Since S/I ≃ Im µ ⊆ F, the quotient ring S/I is commutative.
Let α ∈ Im µ be a nonzero element and write α = µ(g) for some g ∈ S \ I .
Then α−1 = µ(α−1g) ∈ Im µ. Hence, S/I ≃ Im µ is a field.

We denote the field Sim(V, q)/I(V, q) by Sim(V, q). Define a map
µ̄(V, q) : S̄ → F via

µ̄(V, q)(g + I) = µ(g).

Since the restriction µ|I is trivial, the map µ̄(V, q) is well-defined. We will simply
denote Sim(V, q) by S̄ and µ̄(V, q) by µ̄.

Lemma 3.4. The pair (S̄ , µ̄) is an anisotropic totally singular quadratic form over (F, id)
and µ̄ ≃ µan. In particular, µ̄ is a quasi-Pfister form.

Proof. Clearly, µ̄ is an anisotropic totally singular quadratic form. The rest state-
ments of the result follow from the equalities Q(µ̄) = Q(µ) = Q(µan) and
Lemma 3.2.
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Theorem 3.5. The following statements are equivalent.

(1) q is anisotropic.

(2) µ is anisotropic.

(3) I = {0}.

(4) µ ≃ µ̄.

(5) S is a field.

Furthermore, if these conditions are satisfied, then identifying F with a subfield of S , S/F
is a purely inseparable extension of exponent one, i.e., g2 ∈ F for all g ∈ S .

Proof. The equivalences (1) ⇔ (2) ⇔ (3) follow from the equality
I = HomD(V, ker q). The equivalence (3) ⇔ (4) is evident and (3) ⇔ (5) fol-
lows from Proposition 3.3. To prove the last statement of the result, let g ∈ S and
set α = µ(g). Then µ(g2) = α2 = µ(α) by Proposition 3.1, hence µ(g2 + α) = 0. It
follows that g2 = α ∈ F, because µ is anisotropic.

4 Functoriality

We continue to assume that (D, θ) is a division algebra with involution of the
first kind over F and (V, q) is a totally singular quadratic space over (D, θ). Let
K/F be a field extension such that DK is a division ring. Then there exists a
quadratic space (V, q)K := (VK, qK) over (D, θ)K , where VK = V ⊗F K and the
map qK : VK → DK/ Alt(DK, θK) satisfies qK(v ⊗ α) = α2q(v) for every v ∈ V
and α ∈ K. It can be shown that the multiplier map µ(V, q) is not functorial,
in the sense that the isometry µ(VK , qK) ≃ µ(V, q)K does not generally hold (see
Remark 5.3 below). However, for separable extensions we have the following
result.

Proposition 4.1. Let K/F be a separable field extension such that DK is a division ring.
Then there exist a K-algebra isomorphism Sim(VK, qK) ≃ Sim(V, q)⊗F K and an isom-
etry

(Sim(VK, qK), µ(VK , qK)) ≃ (Sim(V, q), µ(V, q))K .

Proof. Since
Sim(VK, qK) ⊆ EndDK

(VK) ≃ EndD(V)⊗F K,

we may identify Sim(VK, qK) with a subalgebra of EndD(V) ⊗F K. Clearly,
f ⊗ α ∈ Sim(VK, qK) for every f ∈ Sim(V, q) and α ∈ K. Conversely,
let f ∈ Sim(VK, qK) and set λ = µ(VK, qK)( f ) ∈ K. Write

f =
m

∑
i=1

gi ⊗ λi,

where gi ∈ EndD(V) and λi ∈ K for i = 1, · · · , m. Since K/F is separable, there
exists a field L with F ⊆ L ⊆ K such that [L : F] < ∞ and λ, λ1, · · · , λm ∈ L.
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Choose η ∈ L such that L = F(η) and set n = [L : F]. Then the set {1, η, · · · , ηn−1}
is a basis of L over F and the map f can be rewritten as

f =
n−1

∑
i=0

fi ⊗ ηi,

where f0, · · · , fn−1 ∈ EndD(V). We show that fi ∈ Sim(V, q) for every
i = 0, · · · , n − 1, which implies that

f ∈ Sim(V, q)⊗F L ⊆ Sim(V, q)⊗F K.

Since L/F is separable and char F = 2, we have L = F(η2). Hence, the set

{1, η2, · · · , η2(n−1)} is also a basis of L over F. Write λ = ∑
n−1
i=0 αiη

2i for some
α0, · · · , αn−1 ∈ F. Then for every v ∈ V we have

n−1

∑
i=0

αiq(v)η
2i = λq(v) = λqK(v ⊗ 1) = qK( f (v ⊗ 1))

= qK(
n−1

∑
i=0

fi(v)⊗ ηi) = qL(
n−1

∑
i=0

fi(v)⊗ ηi) =
n−1

∑
i=0

q( fi(v))η
2i .

It follows that q( fi(v)) = αiq(v) for all i, hence fi ∈ Sim(V, q) and

µ(V, q)( fi) = αi ∈ F. (2)

This proves the existence of the desired K-algebra isomorphism

Sim(VK, qK) ≃ Sim(V, q)⊗F K. (3)

Note that (3) is also an isomorphism of right vector spaces over DK. Moreover,
(2) shows that

µ(VK, qK)( f ) = λ =
n−1

∑
i=0

µ(V, q)( fi)η
2i,

proving that (Sim(VK, qK), µ(VK, qK)) ≃ (Sim(V, q), µ(V, q))K .

By Theorem 3.5 the anisotropy of q over (D, θ) reduces to the anisotropy of µ
over (F, id). We know that an anisotropic totally singular quadratic space over
(F, id) remains anisotropic over every separable extension K of F (this is imme-
diate from the corresponding result for symmetric bilinear forms [8, (10.2.1)]).
Hence, using the isometry µ(VK , qK) ≃ (µ(V, q))K in Proposition 4.1 we obtain
the following result.

Corollary 4.2. Let K/F be a separable field extension such that DK is a division ring. If
q is anisotropic then qK is also anisotropic.

Remark 4.3. It is easy to see that for any quadratic space (V, q) over (D, θ) there
exists a hermitian form (V, h) over (D, θ) such that

q(x) = h(x, x) + Alt(D, θ) ∈ D/ Alt(D, θ).

This correspondence clearly respects field extensions, and (V, q) is anisotropic if
and only if (V, h) is direct, i.e., the condition h(v, v) ∈ Alt(D, θ) for v ∈ V implies
that v = 0. In view of these facts, Corollary 4.2 also follows from the main result
of [5], that direct hermitian forms remain direct over separable extensions.
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Corollary 4.4. Let K/F be a separable field extension such that DK is a division ring.
Then

(Sim(VK, qK), µ̄(VK, qK)) ≃ (Sim(V, q), µ̄(V, q))K .

Proof. Proposition 4.1 and Corollary 4.2 imply that (µ(V, q)an)K ≃ µ(VK, qK)an.
The result therefore follows from Lemma 3.4.

5 Applications to orthogonal involutions

Let (A, σ) be a central simple algebra with orthogonal involution over F.
By [10, (2.6)] we have F ∩ Alt(A, σ) = {0}. Let

S(A, σ) = {x ∈ A | σ(x)x ∈ F ⊕ Alt(A, σ)}.

Hence, for every x ∈ S(A, σ) there exists a unique element α ∈ F such that
σ(x)x + α ∈ Alt(A, σ). As in [11] we denote the element α by qσ(x). Accord-
ing to [11, (3.2)], S(A, σ) is an F-subalgebra of A and the pair (S(A, σ), qσ) is a
totally singular quadratic space over (F, id) satisfying qσ(xy) = qσ(x)qσ(y) for
every x, y ∈ S(A, σ). We denote the kernel of the map qσ : S(A, σ) → F by
m(A, σ).

Let D be a division algebra, Brauer-equivalent to A and let θ : D → D be an
involution of the first kind on D. By [10, (4.2)] there exists a unique, up to a scalar
factor in F×, nonsingular hermitian space (V, h) over (D, θ) such that

(A, σ) ≃ (EndD(V), σh), (4)

where σh is the adjoint involution of EndD(V) with respect to h. Moreover, since
σ is orthogonal, the form h is non-alternating, i.e., h(v, v) /∈ Alt(D, θ) for some
v ∈ V. Define a map ϕσ : V → D/ Alt(D, θ) via

ϕσ(v) = h(v, v) + Alt(D, θ).

It is readily seen that (V, ϕσ) is a totally singular quadratic space over (D, θ).
Note that ϕσ is uniquely determined by σ, up to a scalar factor in F×.

Theorem 5.1. Considering the isomorphism (4) as an identification we have

(i) S(A, σ) = Sim(V, ϕσ).

(ii) qσ = µ(V, ϕσ).

(iii) m(A, σ) = I(V, ϕσ).

Proof. Let f ∈ S(A, σ) and set λ = qσ( f ) ∈ F. Then there exists g ∈ A such that
σ( f ) f + λ = g − σ(g). Hence, for every v ∈ V we have

h( f (v), f (v)) − λh(v, v) = h(σ( f ) f (v), v) − λh(v, v)

= h((σ( f ) f − λ)(v), v)

= h((σ(g) − g)(v), v)

= h(σ(g)(v), v) − h(g(v), v)

= h(v, g(v)) − h(g(v), v)

= h(v, g(v)) − θ(h(v, g(v))) ∈ Alt(D, θ).
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It follows that ϕσ( f (v)) = λϕσ(v) for all v ∈ V, hence f ∈ Sim(V, ϕσ) and
µ(V, ϕσ)( f ) = λ = qσ( f ). This proves that S(A, σ) ⊆ Sim(V, ϕσ).

Let f ∈ Sim(V, ϕσ) and set λ = µ(V, ϕσ)( f ). Since

h((σ( f ) f + λ)(v), v) = h(σ( f ) f (v), v) + λh(v, v)

= h( f (v), f (v)) + λh(v, v),

the equality ϕσ( f (v)) = λϕσ(v) implies that

h((σ( f ) f + λ)(v), v) ∈ Alt(D, θ) for all v ∈ V. (5)

As already observed, h is non-alternating. Hence, by [9, Ch. I, (6.2.4)], (V, h) has
an orthogonal basis, i.e., a basis {v1, · · · , vn} satisfying h(vi, vj) = 0 for i 6= j.
Note that h(vi , vi) 6= 0 for all i, because h is nonsingular. For j = 1, · · · , n, write

(σ( f ) f + λ)(vj) =
n

∑
i=1

viαij, (6)

where αij ∈ D. By (5) there exists dj ∈ D, j = 1, · · · , n, such that

h((σ( f ) f + λ)(vj), vj) = dj − θ(dj). (7)

For j = 1, · · · , n, set wj = vj(h(vj, vj)
−1θ(dj)) ∈ V, so that h(wj, vj) = dj and

h(wj, vi) = 0 for i 6= j. Let g ∈ EndD(V) be the map induced by

g(vj) = wj +
j−1

∑
i=1

viαij, for j = 1, · · · , n.

Then for every i, j we have

h((g − σ(g))(vj), vi) = h(g(vj), vi)− h(vj, g(vi)) =











h(viαij, vi) i < j

dj − θ(dj) i = j

−h(vj, vjαji) i > j

(8)

On the other hand, using (6) we obtain h(viαij, vi) = h((σ( f ) f + λ)(vj), vi) and

h(vj, vjαji) = h(vj, (σ( f ) f + λ)(vi)) = h((σ( f ) f + λ)(vj), vi).

Hence, (8) and (7) imply that

h((g − σ(g))(vj), vi) = h((σ( f ) f + λ)(vj), vi),

for every i, j. Since h is nonsingular, we get (g − σ(g))(vj) = (σ( f ) f + λ)(vj) for
j = 1, · · · , n, i.e.,

σ( f ) f + λ = g − σ(g) ∈ Alt(A, σ).

Hence, f ∈ S(A, σ) and λ = qσ( f ) ∈ F. This proves parts (i) and (ii). The third
part follows from the second.
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We recall from [5] that an involution σ on a central simple algebra A is said to
be direct if σ(a)a ∈ Alt(A, σ) for a ∈ A implies that a = 0. The following result
complements the characterization [11, (3.8)] of direct involutions.

Corollary 5.2. For a central simple algebra with orthogonal involution (A, σ) over F the
following statements are equivalent. (1) σ is direct. (2) qσ is anisotropic. (3) S(A, σ)
is a field. (4) m(A, σ) = {0}. (5) ϕσ is anisotropic. (6) µ(V, ϕσ) is anisotropic. (7)
I(V, ϕσ) = {0}. (8) µ(V, ϕσ) ≃ µ̄(V, ϕσ). (9) Sim(V, ϕσ) is a field.

Proof. The equivalences (1) ⇔ (2) ⇔ (3) were proved in [11, (3.8)] and (2) ⇔ (4)
is evident. The other equivalences follow from Theorem 3.5 and Theorem 5.1.

Remark 5.3. As already mentioned in Remark 4.3, every totally singular
generalized quadratic form q is derived from a hermitian form. Hence, in view
of Theorem 5.1, the functoriality of the pair (Sim(V, q), µ(V, q)) under separable
extensions also follows from the functoriality of S(A, σ) established in [12, (3.5)].
Moreover, it is worth pointing out that this functoriality does not hold in
general. This can be easily seen using Theorem 5.1 and the corresponding
example of non-functoriality of the form qσ given in [11, (3.18)].

Acknowledgement. The author thanks the referees for several useful comments,
improving the manuscript.
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