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Abstract

Let G(k,n) be the complex Grassmann manifold of k-planes in CK*". In
this note, we show that for 1 < k < n and for any selfmap f : G(k,n) —
G(k,n), there exists a k-plane V¥ € G(k,n) such that f(V¥) N V¥ # {0}.

1 Introduction

The problem of determining the fixed point property (f.p.p.) for Grassmann man-
ifolds has been studied by many authors (for example [7], [5], [6]).

Let Ug(n)
n

FM(nq,...,n) = F ,

() = Ty - Up(ng)

ny + - - - + n = n. Here, F stands for one of the fields IR, C or the skew field H,
and

O(n) the orthogonal group of order n if F = R,
Ug(n) = ¢ U(n) the unitary group of order n if F = C,
Sp(n) the symplectic group of order n if F = H.
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In [4], Glover and Homer have given the following necessary condition for
FM(ny,...,ng) to have the f.p.p..

Theorem 1 ([4], Theorem 1). If EM(ny,...,ny) has the f.p.p., then ny,..., ny are
distinct integers and, if F = R or C, at most one is odd.

The above theorem gives rise to the following conjectures:

Conjecture 1. If ny, ..., ng are all distinct then HM(n, . .., ny) has the f.p.p..

Conjecture 2. If ny, ..., ny are all distinct and at most one is odd then FM(ny, ..., ny)
has the f.p.p., for F = Rand F = C.

The above conjectures were already proved to be true in the following cases:
e Projective spaces (FM(1,n —1));

e If ny and n3 are distinct positive even integers and nz > 2n§ — 1 then
CM(1, ny,n3) has the f.p.p. ([4]).

e If 1,n; and n3 are distinct positive integers and nz > 2n§ — 1, then
HM(1, ny, n3) has the f.p.p. ([4]).

o If n; < mn3 are even integers greater than 1 and either n, < 6 or
n3 > n3 — 2ny — 2, then RM(1, np, n3) has the f.p.p. ([4]).

e If ny,ny,n3 are positive integers such that at most one is odd, n; < 3,
ny > n5 —1,and [n1/2] < [n2/2] < [n3/2], then RM(ny,n,,n3) has the
f.p.p- ([4]).

e IfIF = C or H, FM(2,q) has the f.p.p. for all g > 2 ([7]).
e RM(2,q) has the f.p.p. forallg =4korqg=4k+1,k=1,2,3,...([7]).

e Forp <3andg > porp>3andq > 2p>—p—1,CM(p,q) has the f.p.p.
iff pg is even ([5]).

e Forp <3andg > porp >3andg > 2p*> — p—1, HM(p, q) always has
the f.p.p. ([5]).

The main tool used to prove the above results is the calculation of the Lef-
schetz number of a self-map of such a space. Let’s focus on the case of complex
Grassmann manifolds CM(k,n) = G(k,n), the space of k-planes in C**". Let o/*
be the canonical k-plane bundle over G(k, n). If

Ch(r)/k) =1 + 1 + -+ Ck, Ci € H2i(G(k1 7’1), Q)/

is the total Chern class of ¥, then the cohomology ring H*(G(k,n); Q) is given
by:
H*(G(k,n);Q) = Qlex, - - -, k] / Iin,
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where I ,, is the ideal generated by the elements (¢7!),11,...,(c71), . Here,
(c71)q is the part of the formal inverse of ¢ in dimension 24 (see [6], Theorem
2.1). Then, c; is the only generator in dimension 2. Therefore, given a self-map
f:G(k,n) — G(k,n), f*(c1) = mcy for some coefficient m.

Theorem 2 ([5], Theorem 1). Let k < 3andn > kork > 3and n > 2k* —k — 1.
Then every graded ring endomorphism of H* (G (k, n); Q) is an Adams endomorphism®.
Consequently, if f : G(k,n) — G(k,n) is a self-map with f*(c1) = mcy then f*(c;) =
mc;,i=1,...,k

The classification of the graded ring endomorphisms of H*(G(k, n); Q) is fun-
damental in the study of f.p.p. for G(k, n) because of the following.

Proposition 1. An Adams endomorphism of H*(G(k, n); Q) has Lefschetz number zero
if and only if its degree is —1 and kn is odd.

Proof. See [4], Proposition 4. m

In [6], M. Hoffman was able to prove the following.

Theorem 3 ([6], Theorem 1.1). Let k < n and h be a graded ring endomorphism of
H*(G(k,n); Q) with h(cy) = mcy, m # 0. Then h(c;) = m'c;, 1 <i < k.

If k < nand h is a graded ring endomorphism of H*(G(k,n);Q) with
h(c1) = 0, it is still unclear about what / looks like in general. The conjecture
is that, in this case, h must be the null homomorphism. If one can prove such
conjecture then the problem of determining the f.p.p. for G(k,n) will be com-
pletely solved.

In this note, we prove a much more modest result for complex Grassmann
manifolds than a fixed point theorem. Our main theorem is the following.

Theorem 4 (Main Result). Let k > 1 and k < n. Then for every continuous map
f: G(k,n) — G(k,n) thereexists a k-plane V¥ € G(k, n) such that V¥ f(VF) # {0}.

The motivation for this work is the paper [8] where the author gave an alter-
native proof for the f.p.p. of CP?" using characteristic classes. In fact, a closer
look at the proof of the main result in [8] indicates that the same argument would
also yield an alternative proof of the f.p.p. for RP?" by replacing Chern classes
with Stiefel-Whitney classes. We should also point out that a non-trivial intersec-
tion result similar to Theorem 4 has been obtained in [1] for maps between two
different Grassmann manifolds.

!An Adams endomorphism of H*(G(k, 1); Q) is an endomorphism ¢ of the form ¢(x) = A'x
forx € Hzl(G(k, n); Q). The coefficient A is called the degree of ¢.
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2 Proof of the Main Theorem

Throughout this paper, G(k,n) denotes the complex Grassmann manifold of
k-planes in CK+7,

Note that, since G(k, 1) and G(n, k) are homeomorphic, 7¥ and 4" can be seen
as subbundles of the trivial bundle G(k, 1) x C*", which is denoted by e*", and,

under such identification,

')’k @ ,)/n — €k+n'

Lemma 1. Let ch(y") = 1+4¢1 + - - - + Cn be the total Chern class of the bundle «".
Then, a general formula for the class ¢; in terms of the Chern classes of v is given by

Jac]t

G= Y (DR,

o[ =

where « represents the k-uple o« = (ay,...,a)

el = a1+ 2a; + - + kay,
lo| = a1 +ax+ - +ag al =aglay! - a;! and ch(’y

kKN C \—/ng\—/---vczk.

Proof. The proof is given recursively in the index i.
As YK @ 4" = ek we have

ch(7") — ch(y") = ch(e") =1
in H*(G(k,n); Z). So
(Itert-do) = (A+a+---+a) =

and then

Il
[
p—
+
(%l
p—

Then ,
]
- ci— ¢
i=1
forallj =1,...,n, with the convention ¢; = 0 when i > k. Thus,

(1) c1 = —C1;

(ii) ¢ = —(C1 — _Cl) — () = C% — Co;

(iii) Suppose
_ al!
Cj = Z (-1)'“‘uch(ryk)“,

) o!
[|af|=]

forj=1,.... m—1<n.
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Then
Cm = — icl — Gy
i=1
: _il (Civ = ey
i lil(qv w||—m—z( 1)w|+1% h(r")*
- 1; (aml( 1>“|H%0h(7")“ — ¢
i i|| [ ( ”Mﬂl%wwk)m’ (e;=(0,...,0,1,0,...0))
i=1||a||=m—i !
o (~1)LX(B)ch(v")? (B=a+e)
Bl|l=m
where
_ 1B —e;il!
X(B) = b;() 5o
—1)1p;
-y (8l 5 )
b; 40
(18] = 1)t
“Lom
Bl — )Y by
lBl
_ (B =1)1B]
Bl
_ 1Bl ]
B!

2.1 Proof of Theorem 4

Suppose, to the contrary, there exists a continuous map f : G(k,n) — G(k,n)
such that V¥ N f(VK) = {0} for every k-plane V¥ € G(k,n). Then the direct sum
YK @ f*9* can be seen as a subbundle of the trivial bundle e*". Let #"* be the
normal bundle of 7¥ @ f** in ¥, Then

Ch(’)’k) — Ch(f*’}’k) — Cl’l(i’]n_k) = 1. (21)
It follows that
Ch(f*’)’k) \/C]’l(iyn_k) =14+¢+---+¢ (2.2)
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Let
ch(f*v ) =146 +--- 46, & € H*(G(k,n);Q), (2.3)

and
h(" ) =14+t 4+ + by ti € H%(G(k,n); Q). (24)

We will show that it is impossible for
Cn = Ck — ty_x- (2.5)

The proof of the impossibility of the above equality will be split into several
cases.

Case 1: 1 < k < 3. Since ¢c; € H%(G(k,n); Q) is the only generator in dimension
2, f*(c1) is a multiple of ¢y, let’s say f*(c1) = mc;. Following [7] and [5], for
k < 3and k < n, every endomorphism of the ring H*(G(k, n); Q) that preserves
dimension is an Adams endomorphism. Therefore, if f*(c1) = mc; then f*(cp) =
m?cy, ..., f*(ck) = mkey. Thus

ch(f* ) = F*(ch(4")) = 1+ mey + mPer + - - - + mibcy.

It follows that
Cn = mkck ~ bt

in contradiction with Lemma 1.
Case 2: k > 3. This case will be split in four cases.

Case 2(i): n = I(k — 1) + r with remainder r # 1, thatis, 1 < r < k—1
or r = 0. In this case, r is of the form r = 2i or r = 2i + 3, for some integer
i > 0. In case of r = 2i, the class ci_l — cé does not appear in ¢y — t,_i but, by
Lemma 1, it appears in ¢,, contradicting ¢, = ¢ — t,,_. Incase of r = 2i 43,
the class ci_lcéq does not appear in ¢, — t,_ but, by Lemma 1, it appears in ¢;,
contradicting ¢, = ¢, — t,_.

Case 2(ii): k > 4and n = (I +1)(k — 1) + 1. In this case, we have

n = (I+1

)(k — )
I(k—1

)
(
) +
and, sincen >k, > 1. We can write n = (I +1)(k — 1) 4+ 1 in the form
=(1l-1)k—-1)+2(k—2)+3

and, since we are supposing k > 4, k —2 > 2. With these information, one can

check that the class CZ1__11 — C%_z — c3 cannot appear in & — t,_x. On the

other hand, by Lemma 1, the class ch 11 — Ck , — C3 appears in . Therefore,

Cpn = € — t,_ is impossible.
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Case 2(iii): k =4,n = (I+1)(k—1) + 1 and [ even, say | = 2j. In this case,
n—k=3land, sincen > 1,1 > 1. Let

64 = cf+acs+ 0cy + other terms
ty = ' +a'c) + Bl + other terms.

Thus, in the product ¢4 — t3;, e’ is the coefficient of cgj +2, ap is the coefficient of

c3 — ¢} and 0 is the coefficient of ¢, — c}. From Lemma 1 together with the fact

that ¢4, — t3; = ¢y, it follows that

ro B2
A TS
_ (I+2)!
= i
o (I+1)!
% = T
Thus
|
af = w
06 = I+1.
Then, we conclude that a = £1, = iw and || = w

2
divides 68 = [ + 1. It follows that I = 0, but/ > 1, a contradiction!
Case 2(iv): k =4, n = (I+1)(k—1)+1and ! odd, say I = 2j 4+ 1. Again,
n—k=3land, sincen > 1,1 > 1. Let

Gy = cff + occ% + Ocy + ycic3 + other terms
ty = ' +a'cic) T + el + other terms.

It follows that, in the product ¢4 — t3;, aa’ is the coefficient of ¢; — cgj +3, ap is
the coefficient of ¢ — c}, 0B is the coefficient of c; — ¢, and 7B is the coefficient

of cq — 013+1. Since ¢, = ¢4 — t3;, together with Lemma 1,
;o (Bj+4)!
S TTETEE)]
_ (I+2)!
¥ = o
_(I+1)!
op = !
(1+2)!

= g
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Thus
a! = 3j+4
wp — I+2)(1+1)
2
0 = [+1
B = 1+2.
From the two last equalities above, it follows that g divides I +1 and [ + 2.
Therefore, p = 1. It follows that & = w and, since « divides 3] + 4,
(I+2)(I+1) _ 3l+5
~ <3 +4=—.
2 =9t 2
Therefore, 1> < 3. Since ! is an integer not smaller than 1, it follows that | = 1.
Then, 3] +4 = % = 4 is divisible by w = 3, a contradiction! [ ]
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