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Abstract

Let G(k, n) be the complex Grassmann manifold of k-planes in Ck+n. In
this note, we show that for 1 < k < n and for any selfmap f : G(k, n) →
G(k, n), there exists a k-plane Vk ∈ G(k, n) such that f (Vk) ∩ Vk 6= {0}.

1 Introduction

The problem of determining the fixed point property (f.p.p.) for Grassmann man-
ifolds has been studied by many authors (for example [7], [5], [6]).

Let

FM(n1, . . . , nk) =
UF(n)

UF(n1)× · · · × UF(nk)
,

n1 + · · ·+ nk = n. Here, F stands for one of the fields R, C or the skew field H,
and

UF(n) =







O(n) the orthogonal group of order n if F = R,
U(n) the unitary group of order n if F = C,
Sp(n) the symplectic group of order n if F = H.
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In [4], Glover and Homer have given the following necessary condition for
FM(n1, . . . , nk) to have the f.p.p..

Theorem 1 ([4], Theorem 1). If FM(n1, . . . , nk) has the f.p.p., then n1, . . . , nk are
distinct integers and, if F = R or C, at most one is odd.

The above theorem gives rise to the following conjectures:

Conjecture 1. If n1, . . . , nk are all distinct then HM(n1, . . . , nk) has the f.p.p..

Conjecture 2. If n1, . . . , nk are all distinct and at most one is odd then FM(n1, . . . , nk)
has the f.p.p., for F = R and F = C.

The above conjectures were already proved to be true in the following cases:

• Projective spaces (FM(1, n − 1));

• If n2 and n3 are distinct positive even integers and n3 ≥ 2n2
2 − 1 then

CM(1, n2, n3) has the f.p.p. ([4]).

• If 1, n2 and n3 are distinct positive integers and n3 ≥ 2n2
2 − 1, then

HM(1, n2, n3) has the f.p.p. ([4]).

• If n2 < n3 are even integers greater than 1 and either n2 ≤ 6 or
n3 ≥ n2

2 − 2n2 − 2, then RM(1, n2, n3) has the f.p.p. ([4]).

• If n1, n2, n3 are positive integers such that at most one is odd, n1 ≤ 3,
n3 ≥ n2

2 − 1, and [n1/2] < [n2/2] < [n3/2], then RM(n1, n2, n3) has the
f.p.p. ([4]).

• If F = C or H, FM(2, q) has the f.p.p. for all q > 2 ([7]).

• RM(2, q) has the f.p.p. for all q = 4k or q = 4k + 1, k = 1, 2, 3, . . . ([7]).

• For p ≤ 3 and q > p or p > 3 and q ≥ 2p2 − p − 1, CM(p, q) has the f.p.p.
iff pq is even ([5]).

• For p ≤ 3 and q > p or p > 3 and q ≥ 2p2 − p − 1, HM(p, q) always has
the f.p.p. ([5]).

The main tool used to prove the above results is the calculation of the Lef-
schetz number of a self-map of such a space. Let’s focus on the case of complex
Grassmann manifolds CM(k, n) = G(k, n), the space of k-planes in Ck+n. Let γk

be the canonical k-plane bundle over G(k, n). If

ch(γk) = 1 + c1 + · · ·+ ck, ci ∈ H2i(G(k, n); Q),

is the total Chern class of γk, then the cohomology ring H∗(G(k, n); Q) is given
by:

H∗(G(k, n); Q) = Q[c1, . . . , ck]/Ik,n,
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where Ik,n is the ideal generated by the elements (c−1)n+1, . . . , (c−1)n+k. Here,
(c−1)q is the part of the formal inverse of c in dimension 2q (see [6], Theorem
2.1). Then, c1 is the only generator in dimension 2. Therefore, given a self-map
f : G(k, n) → G(k, n), f ∗(c1) = mc1 for some coefficient m.

Theorem 2 ([5], Theorem 1). Let k ≤ 3 and n > k or k > 3 and n ≥ 2k2 − k − 1.
Then every graded ring endomorphism of H∗(G(k, n); Q) is an Adams endomorphism1.
Consequently, if f : G(k, n) → G(k, n) is a self-map with f ∗(c1) = mc1 then f ∗(ci) =
mici, i = 1, . . . , k.

The classification of the graded ring endomorphisms of H∗(G(k, n); Q) is fun-
damental in the study of f.p.p. for G(k, n) because of the following.

Proposition 1. An Adams endomorphism of H∗(G(k, n); Q) has Lefschetz number zero
if and only if its degree is −1 and kn is odd.

Proof. See [4], Proposition 4.

In [6], M. Hoffman was able to prove the following.

Theorem 3 ([6], Theorem 1.1). Let k < n and h be a graded ring endomorphism of
H∗(G(k, n); Q) with h(c1) = mc1, m 6= 0. Then h(ci) = mici, 1 ≤ i ≤ k.

If k < n and h is a graded ring endomorphism of H∗(G(k, n); Q) with
h(c1) = 0, it is still unclear about what h looks like in general. The conjecture
is that, in this case, h must be the null homomorphism. If one can prove such
conjecture then the problem of determining the f.p.p. for G(k, n) will be com-
pletely solved.

In this note, we prove a much more modest result for complex Grassmann
manifolds than a fixed point theorem. Our main theorem is the following.

Theorem 4 (Main Result). Let k > 1 and k < n. Then for every continuous map
f : G(k, n) → G(k, n) there exists a k-plane Vk ∈ G(k, n) such that Vk ∩ f (Vk) 6= {0}.

The motivation for this work is the paper [8] where the author gave an alter-
native proof for the f.p.p. of CP2n using characteristic classes. In fact, a closer
look at the proof of the main result in [8] indicates that the same argument would
also yield an alternative proof of the f.p.p. for RP2n by replacing Chern classes
with Stiefel-Whitney classes. We should also point out that a non-trivial intersec-
tion result similar to Theorem 4 has been obtained in [1] for maps between two
different Grassmann manifolds.

1An Adams endomorphism of H∗(G(k, n); Q) is an endomorphism ϕ of the form ϕ(x) = λix
for x ∈ H2i(G(k, n); Q). The coefficient λ is called the degree of ϕ.
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2 Proof of the Main Theorem

Throughout this paper, G(k, n) denotes the complex Grassmann manifold of
k-planes in Ck+n.

Note that, since G(k, n) and G(n, k) are homeomorphic, γk and γn can be seen
as subbundles of the trivial bundle G(k, n)×Ck+n , which is denoted by ǫk+n, and,
under such identification,

γk ⊕ γn = ǫk+n.

Lemma 1. Let ch(γn) = 1 + c̄1 + · · · + c̄n be the total Chern class of the bundle γn.
Then, a general formula for the class c̄i in terms of the Chern classes of γk is given by

c̄i = ∑
‖α‖=i

(−1)|α|
|α|!

α!
ch(γk)α,

where α represents the k-uple α = (a1, . . . , ak), ‖α‖ = a1 + 2a2 + · · · + kak ,
|α| = a1 + a2 + · · ·+ ak, α! = a1!a2! · · · ak! and ch(γk)α = ca1

1 ⌣ ca2
2 ⌣ · · · ⌣ c

ak
k .

Proof. The proof is given recursively in the index i.
As γk ⊕ γn = ǫk+n, we have

ch(γk) ⌣ ch(γn) = ch(ǫk+n) = 1

in H∗(G(k, n); Z). So

(1 + c1 + · · ·+ ck) ⌣ (1 + c̄1 + · · ·+ c̄n) = 1

and then

1 = 1

0 = c1 + c̄1

0 = c2 + c1 ⌣ c̄1 + c̄2

· · ·

Then

c̄j = −
j

∑
i=1

ci ⌣ c̄j−i

for all j = 1, . . . , n, with the convention ci = 0 when i > k. Thus,

(i) c̄1 = −c1;

(ii) c̄2 = −(c1 ⌣ −c1)− c2 = c2
1 − c2;

(iii) Suppose

c̄j = ∑
||α||=j

(−1)|α|
|α|!

α!
ch(γk)α,

for j = 1, . . . , m − 1 < n.



A note on nontrivial intersection for selfmaps... 669

Then

c̄m = −
m

∑
i=1

ci ⌣ c̄m−i

= −
m

∑
i=1



ci ⌣ ∑
||α||=m−i

(−1)|α|
|α|!

α!
ch(γk)α





=
m

∑
i=1



ci ⌣ ∑
||α||=m−i

(−1)|α|+1 |α|!

α!
ch(γk)α





=
m

∑
i=1



 ∑
||α||=m−i

(−1)|α|+1 |α|!

α!
ch(γk)α

⌣ ci





=
m

∑
i=1

∑
||α||=m−i

(−1)|α+ei|
|α|!

α!
ch(γk)α+ei (ei = (0, . . . , 0, 1, 0, . . . 0))

= ∑
||β||=m

(−1)|β|X(β)ch(γk)β (β = α + ei)

where

X(β) = ∑
bi 6=0

|β − ei|!

(β − ei)!

= ∑
bi 6=0

(|β| − 1)!bi

β!

=
m

∑
i=1

(|β| − 1)!bi

β!

=
(|β| − 1)! ∑

m
i=1 bi

β!

=
(|β| − 1)!|β|

β!

=
|β|!

β!

2.1 Proof of Theorem 4

Suppose, to the contrary, there exists a continuous map f : G(k, n) → G(k, n)
such that Vk ∩ f (Vk) = {0} for every k-plane Vk ∈ G(k, n). Then the direct sum
γk ⊕ f ∗γk can be seen as a subbundle of the trivial bundle ǫk+n. Let ηn−k be the
normal bundle of γk ⊕ f ∗γk in ǫk+n. Then

ch(γk) ⌣ ch( f ∗γk) ⌣ ch(ηn−k) = 1. (2.1)

It follows that

ch( f ∗γk) ⌣ ch(ηn−k) = 1 + c̄1 + · · ·+ c̄n. (2.2)
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Let
ch( f ∗γk) = 1 + c̃1 + · · ·+ c̃k, c̃i ∈ H2i(G(k, n); Q), (2.3)

and
ch(ηn−k) = 1 + t1 + · · ·+ tn−k, tj ∈ H2j(G(k, n); Q). (2.4)

We will show that it is impossible for

c̄n = c̃k ⌣ tn−k. (2.5)

The proof of the impossibility of the above equality will be split into several
cases.

Case 1: 1 < k ≤ 3. Since c1 ∈ H2(G(k, n); Q) is the only generator in dimension
2, f ∗(c1) is a multiple of c1, let’s say f ∗(c1) = mc1. Following [7] and [5], for
k ≤ 3 and k < n, every endomorphism of the ring H∗(G(k, n); Q) that preserves
dimension is an Adams endomorphism. Therefore, if f ∗(c1) = mc1 then f ∗(c2) =
m2c2, . . . , f ∗(ck) = mkck. Thus

ch( f ∗γk) = f ∗(ch(γk)) = 1 + mc1 + m2c2 + · · ·+ mkck.

It follows that
c̄n = mkck ⌣ tn−k,

in contradiction with Lemma 1.

Case 2: k > 3. This case will be split in four cases.

Case 2(i): n = l(k − 1) + r with remainder r 6= 1, that is, 1 < r < k − 1
or r = 0. In this case, r is of the form r = 2i or r = 2i + 3, for some integer
i ≥ 0. In case of r = 2i, the class cl

k−1 ⌣ ci
2 does not appear in c̃k ⌣ tn−k but, by

Lemma 1, it appears in c̄n, contradicting c̄n = c̃k ⌣ tn−k. In case of r = 2i + 3,
the class cl

k−1ci
2c3 does not appear in c̃k ⌣ tn−k but, by Lemma 1, it appears in c̄n,

contradicting c̄n = c̃k ⌣ tn−k.

Case 2(ii): k > 4 and n = (l + 1)(k − 1) + 1. In this case, we have

n = (l + 1)(k − 1) + 1

= l(k − 1) + k

and, since n > k, l ≥ 1. We can write n = (l + 1)(k − 1) + 1 in the form

n = (l − 1)(k − 1) + 2(k − 2) + 3

and, since we are supposing k > 4, k − 2 > 2. With these information, one can

check that the class cm−1
k−1 ⌣ c2

k−2 ⌣ c3 cannot appear in c̃k ⌣ tn−k. On the

other hand, by Lemma 1, the class cm−1
k−1 ⌣ c2

k−2 ⌣ c3 appears in c̄n. Therefore,
c̄n = c̃k ⌣ tn−k is impossible.
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Case 2(iii): k = 4, n = (l + 1)(k − 1) + 1 and l even, say l = 2j. In this case,
n − k = 3l and, since n > 1, l ≥ 1. Let

c̃4 = c4
1 + αc2

2 + θc4 + other terms

t3l = c3l
1 + α′c

3j
2 + βcl

3 + other terms.

Thus, in the product c̃4 ⌣ t3l , αα′ is the coefficient of c
3j+2
2 , αβ is the coefficient of

c2
2 ⌣ cl

3 and θβ is the coefficient of c4 ⌣ cl
3. From Lemma 1 together with the fact

that c̃4 ⌣ t3l = c̄n, it follows that

αα′ =
(3j + 2)!

(3j + 2)!1!

αβ =
(l + 2)!

l!2!

θβ =
(l + 1)!

l!1!
.

Thus

αα′ = 1

αβ =
(l + 2)(l + 1)

2
θβ = l + 1.

Then, we conclude that α = ±1, β = ±
(l + 2)(l + 1)

2
and |β| =

(l + 2)(l + 1)

2
divides θβ = l + 1. It follows that l = 0, but l ≥ 1, a contradiction!

Case 2(iv): k = 4, n = (l + 1)(k − 1) + 1 and l odd, say l = 2j + 1. Again,
n − k = 3l and, since n > 1, l ≥ 1. Let

c̃4 = c4
1 + αc2

2 + θc4 + γc1c3 + other terms

t3l = c3l
1 + α′c1c

3j+1
2 + βcl

3 + other terms.

It follows that, in the product c̃4 ⌣ t3l , αα′ is the coefficient of c1 ⌣ c
3j+3
2 , αβ is

the coefficient of c2
2 ⌣ cl

3, θβ is the coefficient of c4 ⌣ cl
3 and γβ is the coefficient

of c1 ⌣ cl+1
3 . Since c̄n = c̃4 ⌣ t3l , together with Lemma 1,

αα′ =
(3j + 4)!

1!(3j + 3)!

αβ =
(l + 2)!

l!2!

θβ =
(l + 1)!

l!1!

γβ =
(l + 2)!

1!(l + 1)!
.
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Thus

αα′ = 3j + 4

αβ =
(l + 2)(l + 1)

2
θβ = l + 1

γβ = l + 2.

From the two last equalities above, it follows that β divides l + 1 and l + 2.

Therefore, β = 1. It follows that α = (l+2)(l+1)
2 and, since α divides 3j + 4,

(l + 2)(l + 1)

2
≤ 3j + 4 =

3l + 5

2
.

Therefore, l2 ≤ 3. Since l is an integer not smaller than 1, it follows that l = 1.

Then, 3j + 4 = 3l+5
2 = 4 is divisible by

(l+2)(l+1)
2 = 3, a contradiction!
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